ASIAN JOURNAL OF PHARMACEUTICAL AND CLINICAL RESEARCH

ISSN - 0974-2441 Research Article

QUANTITATIVE STRUCTURE ACTIVITY RELATIONSHIP STUDY FOR THE PREDICTION OF INHIBITORY CONCENTRATION 50 FOR 5-N-ACETYL-BETA-D-NEURAMINIC ACID STRUCTURALLY SIMILAR COMPOUNDS USING NEURAL NET

PONMARY PUSHPA LATHA D¹, JOSEPH PUSHPA RAJ D²

¹Department of Computer Applications, Karunya University, Coimbatore - 641 114, Tamil Nadu, India. ²Department of Information Technology, Francis Xavier Engineering College, Tirunelveli - 627 003, Tamil Nadu, India. Email: ponmarymca@gmail.com

Received: 26 June 2014, Revised and Accepted: 24 July 2014

ABSTRACT

Quantitative structure activity relationship (QSAR) study has been developed for structurally similar to 5-N-acetyl-Beta-D-Neuraminic acid as inhibitors for *Clostridium tetani* causing targets using neural network. QSAR models for biological activity of half-maximal inhibitory concentration 50 (IC₅₀) were created with 110 training compounds, 50 test compounds, and 16 different descriptors. The predictive capability of the QSAR models was evaluated by r^2 , $q^2_{LMO(TestSet)}$, $q^2_{ROOT(TestSet)}$, $q^2_{ROOT(TestSet)}$, $q^2_{ROOT(TestSet)}$, $q^2_{ROOT(TestSet)}$, and $q^2_{ROOT(TestSet)}$ for IC₅₀ (0.9) which demonstrates the high robustness and real predictive power of IC₅₀ model.

Keywords: Quantitative structure activity relationship, Neural network, Inhibitory concentration 50, Leave-many-out, Leave-one-out, BOOT.

INTRODUCTION

Quantitative structure activity relationship (QSAR) describes how a known biological activity can differ as a function of molecular descriptors derived from the chemical structure of a set of molecules. Many physiological activities of a molecule can be associated with their composition and structure. Molecular descriptors, which are numerical depictions of the molecular structures, are used for performing QSAR analysis. 5-N-acetyl-Beta-D-Neuraminic acid represents the most important class of biologically active compounds as inhibitors of Clostridium tetani [1,2]. The half maximal inhibitory concentration 50 (IC₁₀) is the concentration of an inhibitor that is necessary for 50% inhibition of an enzyme in vitro [3]. In the present study, QSAR studies have been carried out for 5-N-acetyl-Beta-D-Neuraminic acid and its structurally similar compounds with (>95%). We have developed the IC_{ro} QSAR [4,5] models for 5-N-acetyl-Beta-D-Neuraminic acid and its structurally similar compounds with (>95%) using neural network by the rapid miner software [6].

MATERIALS AND METHODS

Data set

Training set of 110 compounds and test set of 50 compounds related to 5-N-acetyl-beta-D-neuraminic acid (Fig. 1) which is available in *C. tetani* were collected from pubchem [7]. The Dataset is in the form of smiles notation, which are given as supporting material, the smiles notation are given to QikProp [8] program to calculate the molecular descriptors. The molecular descriptors are converted into tabular form, and it was given as input to rapid miner software to predict the model using neural network. In order to get the efficient model, 69% of the dataset are taken as a training set and the remaining dataset are considered for test set.

Molecular descriptors

Theoretical molecular descriptors are calculated using QikProp [8] program. The following descriptors are procured into consideration for developing the model: (1) Molecular weight (MW), (2) hydrophobic SASA (HAS), (3) hydrophilic SASA (HLSA), (4) molecular volume (MV), (5) vdW polar SA (PSA), (6) number of rotatable bonds (RB), (7) donor - hydrogen bonds (DHB), (8) acceptor - hydrogen bonds (AHB), (9) ionization potential (IP), (10) electron affinity (EA), (11)

log P for octanol/water (Log P), (12) log S for aqueous solubility (AS), (13) human oral absorption (HOA), (14) lipinski rule (LR), (15) half-maximal IC_{so} , (16) number of ring (NR).

Neural net

An artificial neural network (ANN) is an information processing paradigm that is enthused, by the way, biological nervous systems such as the brain, process information [9]. The key constituent of this model is the novel structure of the information processing system. It is composed of a large number of greatly interrelated processing elements (neurons) operational in unison to resolve exact problems. This ANN operator learns a model by means of a feed-forward neural network trained by a back propagation algorithm (multilayer perception) (Fig. 2).

A feed forward neural network is a biologically stirred classification algorithm. It contains a large number of simple neuron-like processing units, structured in layers. Each unit in a layer is related with all the units in the previous layer. These connections are not all equal; each connection may have different strength or weight. The weights on these

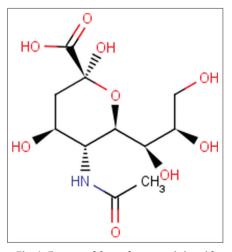


Fig. 1: 5-n-acetyl-beta-d-neuraminic acid

connections encode the knowledge of the network. Often the units in a neural network are also called nodes. Data enter at the inputs and pass all the way through the network, layer by layer, until it arrive at the outputs. During normal operation that is when it acts as a classifier, there is no feedback between layers. This is why they are called feed-forward neural networks. Propagation algorithm propagates inputs forward in the usual way, i.e., 1. All outputs are calculated via sigmoid thresholding of the inner product of an equivalent weight and input vectors. All outputs at stage n are connected to all the inputs at stage n+1.2. It propagates the errors backwards by apportioning them to each unit according to the amount of this error the unit is responsible for. q² is calculated using the following formula. y, is the actual experimental activity,

$q^2 = 1 - \sum (y_i - j_i)^2 / \sum (y_i - y_i)^2$

Where, y_i the average actual experimental activity and y_i the predicted activity of the compound *i* are computed by the predicted model. The robustness and internal predictivity of the models were evaluated by both leave-one-out (LOO) cross-validation $(q^2_{LOO (TestSet)})$ and leave-many-out (LMO) cross-validation $(q^2_{LMO (TestSet)})$ [10-21]. The in-house

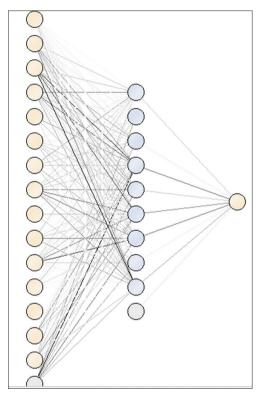


Fig. 2: Improved neural net

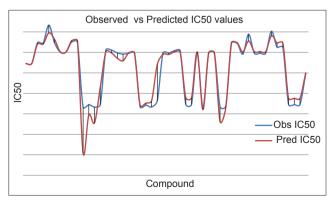


Fig. 3: Observed versus predicted inhibitory concentration 50 for testset

computer programs are created in Java programming to do the following cross-validation techniques: Leave-some-out, LOO, and bootstrapping. In LMO, the data set was split into the sequence of nine set of compounds (45, 40, 35, 30, 25, 20, 15, 10, 5) and the crossvalidation was performed. The average of q² LMO was calculated as follows: IC_{ro} (0.9610). LOO cross-validation is as follows:

- 1. Assign total compound n=50, compound i=1
- 2 Leave compound i
- 3. Calculate q²,
- 4. i=i+1
- Repeat step 2-5 till i≤50 5.
- Find the average of $q^2_{i=1.n}$ 6.
- q^2 LOO (Test set) for IC₅₀ is 0.8669. Bootstrap cross validation is computed as follows:
- 1. Generate n random number R, within the range of 1-50 where i=1..n 2. i=1
- Remove R, compounds 3.
- Calculate q², 4.
- 5. i=i+1
- 6.
- Repeat step 3-5 till i<=n 7. Find the average of $q^2_{i=1}$
- The average of q^2 BOOT was calculated as follows: IC₅₀ (0.9581). Table 1 shows the different cross-validation of IC₅₀ (Fig. 3) and Table 2 represents the observed and predicted values which were found to be a small deviation.

RESULTS AND DISCUSSION

In practice, neurons normally do not produce an output unless their total input goes over a threshold value. The total input for each neuron

Hidden layer	
Node 1 (sigmoid)	
RB	-0.131
MW	-0.707
HAS	0.747
HLSA	1.707
MV	-0.163
DHB	-0.330
AHB	1.354
Log P	-0.721
IP	0.432
EA	0.907
НОА	0.229
RF	-0.217
Ring A	0.035
AS	0.004
PSA	0.933
Threshold	0.241
Node 2 (sigmoid)	
RB	0.238
MW	0.346
HAS	0.134
HLSA	0.304
MV	0.280
DHB	-0.021
AHB	0.271
Log P	-0.534
IP	-0.110
EA	-0.223
НОА	0.713
RF	0.094
Ring A	0.019
AS	-0.192
PSA	0.198
Threshold	-1.287
Node 3 (sigmoid)	
RB	0.275
	Contd

iontd		Contd	
MW	-0.688	AHB	1.046
HAS	1.308	Log P	1.884
HLSA	0.841	IP	0.012
MV	0.347	EA	-1.68
DHB	-0.252	HOA	2.708
AHB	0.683	RF	0.527
Log P	-0.823	Ring A	-0.00
IP	-0.005	AS	-0.66
EA	0.098	PSA	0.583
НОА	0.321	Threshold	-2.06
RF	-0.231	Node 8 (sigmoid)	
Ring A	0.006	RB	0.097
AS	0.590	MW	0.035
PSA	-0.137	HAS	0.399
Threshold	-0.889	HLSA	0.314
lode 4 (sigmoid)		MV	0.103
RB	0.158	DHB	-0.07
MW	1.603	AHB	0.204
HAS	-3.288	Log P	-0.75
HLSA	-2.445	IP	-0.07
MV	-1.225	EA	-0.23
DHB	0.530	НОА	0.646
AHB	0.745	RF	0.153
Log P	0.674	Ring A	0.023
IP EA	-0.071	AS	0.148
EA	-0.201	PSA	0.03
НОА	0.686	Threshold	-1.24
RF	0.963	Node 9 (sigmoid)	
Ring A	0.002	RB	-0.74
AS	1.594	MW	-1.82
PSA	-0.824	HAS	3.326
Threshold	-3.616	HLSA	1.122
ode 5 (sigmoid)		MV	0.454
RB	-0.324	DHB	-0.82
MW	-1.046	AHB	0.780
HAS	1.286	Log P	-1.85
HLSA	1.484	IP	-0.7
MV	0.220	EA	-1.12
DHB	-0.781	НОА	0.240
AHB	0.268	RF	0.114
Log P	-1.615	Ring A	-0.01
IP	0.029	AS	-0.05
EA	0.477	PSA	-0.73
НОА	0.976	Threshold	1.08
RF	-0.243		1.00.
		Output	
Ring A	-0.048	Regression (linear)	
AS	0.302	Node 1	-0.74
PSA	-0.399	Node 2	0.003
Threshold	-1.487	Node 3	-0.23
ode 6 (sigmoid)		Node 4	1.91
RB	0.404	Node 5	-0.7
MW	-1.204	Node 6	-1.5
HAS	2.705	Node 7	1.88
HLSA	0.469		
MV	0.863	Node 8	-0.2
		Node 9	-1.1
DHB	-0.674	Threshold	0.40
АНВ	0.055		
Log P	-1.950		
IP	0.725	Table 1: Validation of IC ₅₀ model	
EA	0.669	ruble il fundation of 10 ₅₀ model	
HOA	1.784	Model r^2 r^2	~ ²
RF	-0.070	Model r^2 $q^2_{LMO(TestSet)}$ $q^2_{LOO(TestSet)}$	$\mathbf{q}^2_{BOOT (TestS}$
Ring A	-0.028	IC ₅₀ 0.9655 0.9610 0.8669	0.9581
AS	1.067		
PSA	-1.768	LMO: Leave-many-out, LOO: Leave-one-out, IC ₅₀ : Inhibitory c	oncentration 50
Threshold	-0.890		
ode 7 (sigmoid)		is the sum of the weighted inputs to the neuron min	
RB	0.342	value. This is then passed through a sigmoid function.	Γhe following
MW	0.555	the sigmoid and threshold values.	0
HAS	0.641		
HLSA	-0.707	Normal water and interdenal sector sector sector sector	the 10
MV	0.088	Neural net predicted values are more accurate than	
	-0.898	linear regression QSAR study predicted values (Ta	ole 2) [22]. 1
DHB		Graph of experimental versus the predicted values	

Table 2: Observed versus predicted values

Observed IC ₅₀	Predicted IC ₅₀
0.4916	0.489698
0.4916	0.489721
0.6928	0.67989
0.6928	0.679953
0.8658	0.789687
0.6935	0.726929
0.6022	0.605415
0.6022	0.60487
0.7011	0.714114
0.7011	0.714117
0.0656	-0.38371
0.0897	-0.01185
0.0656	-0.08941
0.0874	0.255302
0.6225	0.60704
0.6212	0.593262
0.5945	0.542341
0.5833	0.517553
0.5909	0.595678
0.5909	0.595668
0.0680	0.080061
0.0847	0.104308
0.0664	0.126232
0.1265	0.482732
0.5939	0.482732
0.5939	0.579481
0.6156	0.603509
0.6156	0.603509
0.0910	0.157199
0.0910	0.157199
	0.137199
0.5833	
0.0663	0.041051
0.5909	0.595686
0.5909	0.595678
0.0675	-0.0761
0.0723	0.058521
0.6886	0.694463
0.6886	0.694463
0.5833	0.604126
0.7772	0.711414
0.5921	0.60771
0.5921	0.607712
0.5921	0.607712
0.8057	0.761137
0.6485	0.69177
0.6485	0.691769
0.0899	0.151601
0.0899	0.151601
0.0899	0.151601
0.3882	0.396843

IC₅₀: Inhibitory concentration 50

 $\rm IC_{50}$ model is displayed in Fig. 3. The training compound in this study shows the range of $\rm IC_{50}$ between 0.0298 and 0.8439 Table 1 describes the $q^2_{\rm LM0(TestSet)}, q^2_{\rm L00(TestSet)}$ and $q^2_{\rm B00T(TestSet)}$ values of neural net $\rm IC_{50}$ model. The $q^2_{\rm LM0(TestSet)}, q^2_{\rm L00(TestSet)}$ and $q^2_{\rm B00T(TestSet)}$ values of multivariate linear regression $\rm IC_{50}$ model are also above 0.8. Since the values are greater than 0.8, The QSAR model may be considered.

CONCLUSION

In this study, it was possible to obtain an ANN QSAR [23,24] model of IC₅₀ for a set of one hundred and ten compounds which are 95% structurally similar to 5-N-acetyl-beta-D-neuraminic acid as inhibitors for *C. tetani* neurotoxins. The LOO, LMO, and BOOT cross-validation techniques show that the model is significant, robust and has good predictability. The IC₅₀ models are showing minimum deviation between observed and predicted values and also having good internal and external predictive power.

ACKNOWLEDGMENT

I thank Dr. D. Jeya Sundara Sharmila for her valuable encouragement in the field of research.

REFERENCES

- 1. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, *et al.* The protein data bank. Nucleic Acids Res 2000;28(1):235-42.
- Foster J, Kane P, Speight N. The Detoxx .system: detoxification of biotoxins in chronic neurotoxic syndromes. Townsend Letter for Doctors and Patients. November 2002.
- Cheng Y, Prusoff WH. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 1973;22(23):3099-108.
- 4. Available from: http://www.rapid-i.com/.
- Pubchem Project. Available from: ttp://www.pubchem.ncbi.nlm.nih. gov/.
- 6. Schrodinger, Qikprop. New York, NY: LLC; 2008.
- Yao XJ, Panaye A, Doucet JP, Zhang RS, Chen HF, Liu MC, et al. Comparative study of QSAR/QSPR correlations using support vector machines, radial basis function neural networks, and multiple linear regression. J Chem Inf Comput Sci 2004;44(4):1257-66.
- Castilho C, Guido RV. Andricopulo AD. Classical and hologram: QSAR studies on a series of tacrine derivatives as butyrylcholinesterase inhibitors. Lett Drug Des Discov 2007;4:106-13.
- Papa E, Dearden JC, Gramatica P. Linear QSAR regression models for the prediction of bioconcentration factors by physicochemical properties and structural theoretical 0molecular descriptors. Chemosphere 2007;67(2):351-8.
- de Melo EB, Ferreira MM. Multivariate QSAR study of 4,5-dihydroxypyrimidine carboxamides as HIV-1 integrase inhibitors. Eur J Med Chem 2009;44(9):3577-83.
- Hazuda DJ, Felock P, Witmer M, Wolfe A, Stillmock K, Grobler JA, et al. Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells. Science 2000;287(5453):646-50.
- Ghasemi J, Saaidpour S. QSPR prediction of aqueous solubility of drug-like organic compounds. Chem Pharm Bull (Tokyo) 2007;55(4):669-74.
- Chung JY, Pasha FA, Cho SJ, Won M, Lee JJ, Lee K. Pharmacophore-based 3D-QSAR of HIF-1 inhibitors. Arch Pharm Res 2009;32(3):317-23.
- Solomon KA, Sundararajan S, Abirami V. QSAR studies on N-aryl derivative activity towards Alzheimer's disease. Molecules 2009;14:1448-55.
- Hansch C, Fujita T. A method for the correlation of biological activity and chemical structure. J Am Chem Soc 1964;86(8):1616-26.
- Liu A, Guang H, Zhu L, Du G, Lee SM, Wang Y 3D-QSAR analysis of a new type of acetylcholinesterase inhibitors. Sci China C Life Sci 2007;50(6):726-30.
- Pasha FA, Nam KD, Cho SJ. CoMFA based quantitative structure toxicity relationship of azo dyes. Mol Cell Toxicol 2007;3:145-9.
- Pasha FA, Srivastava HK, Srivastava A, Singh PP. QSTR study of small organic molecules against tetrahymena pyriformis. QSAR Comb Sci 2007;26(1):69-84.
- Pasha FA, Neaz MM, Cho SJ, Kang SB. Quantitative structure activity relationship (QSAR) study of estrogen derivatives based on descriptors of energy and softness. Chem Biol Drug Des 2007;70(6):520-9.
- Pasha FA, Chung HW, Cho SJ, Kang SB. 3D-quantitative structure activity analysis and quantum chemical analysis of pyrido-di-indoles. Int J Quant Chem 2008;108(2):391-400.
- Recanatini M, Cavalli A, Hansch C. A comparative QSAR analysis of acetylcholinesterase inhibitors currently studied for the treatment of Alzheimer's disease. Chem Biol Interact 1997;105(3):199-228.
- 22. Latha PP, Sharmila JS. QSAR study for the prediction of IC50 and Log P for 5-N-Acetyl-Beta-DNeuraminic acid structurally similar compounds using stepwise (multivariate) linear regression. Int J Chem Res 2010;2(1):32-8.
- Devanathan R. Pharmaceutical and analytical studies on swarna makshiba bhasma - An ayurvedic formulation. Asian J Pharm Clin Res 2013;6(1):26-9.
- Rathor S, Ram A. Floating drug delivery system as an approach to increase the gastric retention of methotrexate formulation and evaluation. Asian J Pharm Clin Res 2013;6(1):42-7.