MESENCHYMAL STEM CELLS: AN INNOVATIVE APPROACH IN PHARMACOKINETICS

Authors

  • Seema Tripathy
  • Prafulla Kumar Mohanty

DOI:

https://doi.org/10.22159/ajpcr.2017.v10i3.16023

Abstract

ABSTRACT
Multipotent mesenchymal stem cells (MSCs) are special kind of stem cells which originate from mesenchyme. These cells can be used as an imperative
tool to study reproductive toxicity, carcinogenicity, mutagenicity, genotoxicity, and pharmacokinetics. This novel system may reveal toxicantinduced
etiology, decipher detailed understanding on molecular mechanisms of toxicants induced pathways and also enumerate the safe dose of
an investigational product. Hence, this could ultimately replace, improve or overtake current predictive models in toxicology. The particular review
describes the utilization of MSCs in different field of toxicological and pharmacological research.
Keywords: Mesenchymal stem cells, Toxicant, Etiology, Pharmacokinetics.

Downloads

Download data is not yet available.

References

REFERENCES

Krzyzosiak WJ, Sobczak K, Wojciechowska M, Fiszer A, Mykowska A, Kozlowski P. Triplet repeat RNA structure and its role as pathogenic agent and therapeutic target. Nucleic Acids Res 2012;40(1):11-26.

Il’yasova D, Kloc N, Kinev A. Cord blood cells for developmental toxicology and environmental health. Front Public Health 2015;3:265.

Baraldo M. The influence of circadian rhythms on the kinetics of drugs in humans. Expert Opin Drug Metab Toxicol 2008;4(2):175-92.

Assessment of the Safety and Efficacy of a New Thrombolytic Regimen (ASSENT)-Investigators. Efficacy and safety of tenecteplase in combination with enoxaparin, abciximab, or unfractionated heparin: The ASSENT-3 randomised trial in acute myocardial infarction. Lancet 2001;358(9282):605-13.

Wobus AM, Löser P. Present state and future perspectives of using pluripotent stem cells in toxicology research. Arch Toxicol 2011;85(2):79-117.

Suter-Dick L, Alves PM, Blaauboer BJ, Bremm KD, Brito C, et al. Stem cell-derived systems in toxicology assessment. Stem Cells Dev 2015;24(11):1284-96.

Ranganatha N, Kuppast IJ. A review on alternatives to animal testing methods in drug development. Int J Pharm Pharm Sci 2012;4(5):28-32.

Davila JC, Cezar GG, Thiede M, Strom S, Miki T, Trosko J. Use and application of stem cells in toxicology. Toxicol Sci 2004;79(2):214-23.

Andersen ME, Krewski D. Toxicity testing in the 21st century: Bringing the vision to life. Toxicol Sci 2009;107(2):324-30.

Sharma P, Kumar P, Sharma R, Dhot PS. Futuristic scope of stem cells in medicine. Asian J Pharm Clin Res 2016; 9 (Suppl 1); 13-16.

Nishikawa S, Jakt LM, Era T. Embryonic stem-cell culture as a tool for developmental cell biology. Nat Rev Mol Cell Biol 2007;8(6):502-7.

Morrison SJ, Kimble J. Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 2006;441(7097):1068-74.

Wobus AM, Holzhausen H, Jäkel P, Schöneich J. Characterization of a

Fig. 11: Differentiation of mesenchymal stem cells into different reproductive cells

Asian J Pharm Clin Res, Vol 10, Issue 3, 2017, 25-36

Tripathy and Mohanty

pluripotent stem cell line derived from a mouse embryo. Exp Cell Res 1984;152(1):212-9.

Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981;292(5819):154-6.

Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 1981;78(12):7634-8.

Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998;282(5391):1145-7.

Wobus, AM, Holzhausen H, Jakel P, Schoneich J. Characterization of a pluripotent stem cell line derived from a mouse embryo. Exp Cell Res 1984;152(1):212-9.

Keller GM. In vitro differentiation of embryonic stem cells. Curr Opin Cell Biol 1995;7(6):862-9.

Li M, Pevny L, Lovell-Badge R, Smith A. Generation of purified neural precursors from embryonic stem cells by lineage selection. Curr Biol 1998;8(17):971-4.

Brüstle O, Jones KN, Learish RD, Karram K, Choudhary K, Wiestler OD, et al. Embryonic stem cell-derived glial precursors: A source of myelinating transplants. Science 1999;285(5428):754-6.

Pera MF, Reubinoff B, Trounson A. Human embryonic stem cells. J Cell Sci 2000;113:5-10.

Liu W, Deng Y, Liu Y, Gong W, Deng W. Stem cell models for drug discovery and toxicology studies. J Biochem Mol Toxicol 2013;27(1):17-27.

Hong EJ, Jeung EB. Assessment of developmental toxicants using human embryonic stem cells. Toxicol Res 2013;29(4):221-7.

Seiler AE, Spielmann H. The validated embryonic stem cell test to predict embryotoxicity in vitro. Nat Protoc 2011;6(7):961-78.

Xin F, Susiarjo M, Bartolomei MS. Multigenerational and transgenerational effects of endocrine disrupting chemicals: A role for altered epigenetic regulation? Semin Cell Dev 2015; 43, 66-75.

Schönborn F, Pokovic K, Wobus AM, Kuster N. Design, optimization, realization, and analysis of an in vitro system for the exposure of embryonic stem cells at 1.71 GHz. Bioelectromagnetics 2000;21(5):372-84.

Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126(4):663-76.

Singh VK, Kalsan M, Kumar N, Saini A, Chandra R. Induced pluripotent stem cells: Applications in regenerative medicine, disease modeling, and drug discovery. Front Cell Dev Biol 2015;3:2.

Scott CW, Peters MF, Dragan YP. Human induced pluripotent stem cells and their use in drug discovery for toxicity testing. Toxicol Lett 2013;219(1):49-58.

Deshmukh RS, Kovács KA, Dinnyés A. Drug discovery models and toxicity testing using embryonic and induced pluripotent stem-cell-derived cardiac and neuronal cells. Stem Cells Int 2012;2012:379569.

Tofighi R, Moors M, Bose R, Ibrahim WN, Ceccatelli S. Neural stem cells for developmental neurotoxicity studies. Methods Mol Biol 2011;758:67-80.

Kang KS, Trosko JE. Stem cells in toxicology: Fundamental biology and practical considerations. Toxicol Sci 2011;120 Suppl 1:S269-89.

O’Hagan HM. Chromatin modifications during repair of environmental exposure-induced DNA damage: A potential mechanism for stable epigenetic alterations. Environ Mol Mutagen 2014;55(3):278-91.

Evans WH, Martin PE. Gap junctions: Structure and function (review). Mol Membr Biol 2002;19(2):121-36.

Trosko JE, Chang CC. Nongenotoxic mechanisms in carcinogenesis: Role of inhibited intercellular communication. In: Hart RW, Hoerger FD, editors. Banbury Report 31: Carcinogen Risk Assessment: New Directions in the Qualitative and Quantitative Aspects. New York: Cold Spring Harbor Laboratory; 1988. p. 139-70.

Budunova IV, Williams GM. Cell culture assays for chemicals with tumor-promoting or tumor-inhibiting activity based on the modulation of intercellular communication. Cell Biol Toxicol 1994;10(2):71-116.

Babica P, Sovadinová I, Upham BL. Scrape loading/dye transfer assay. Methods Mol Biol 2016;1437:133-44.

Kielian T, Esen N. Effects of neuroinflammation on glia-glia gap junctional intercellular communication: A perspective. Neurochem Int 2004;45(2-3):429-36.

Yang YC, Wang SW, Hung HY, Chang CC, Wu IC, Huang YL, et al. Isolation and characterization of human gastric cell lines with stem cell phenotypes. J Gastroenterol Hepatol 2007;22(9):1460-8.

Upham BL, Weis LM, Trosko JE. Modulated gap junctional intercellular communication as a biomarker of PAH epigenetic toxicity: Structure-function relationship. Environ Health Perspect 1998;106 Suppl 4:975-81.

el-Fouly MH, Trosko JE, Chang CC. Scrape-loading and dye transfer. A rapid and simple technique to study gap junctional intercellular communication. Exp Cell Res 1987;168(2):422-30.

Trosko JE, Upham BL. The emperor wears no clothes in the field of carcinogen risk assessment: Ignored concepts in cancer risk assessment. Mutagenesis 2005;20(2):81-92.

Mally A, Chipman JK. Non-genotoxic carcinogens: Early effects on gap junctions, cell proliferation and apoptosis in the rat. Toxicology 2002;180(3):233-48.

Mesnil M, Fitzgerald DJ, Yamasaki H. Phenobarbital specifically reduces gap junction protein mRNA level in rat liver. Mol Carcinog 1988;1(2):79-81.

Rohwedel J, Guan K, Hegert C, Wobus AM. Embryonic stem cells as an in vitro model for mutagenicity, cytotoxicity and embryotoxicity studies: Present state and future prospects. Toxicol In Vitro 2001;15(6):741-53.

Klein D. Vascular wall-resident multipotent stem cells of mesenchymal nature within the process of vascular remodeling: Cellular basis, clinical relevance, and implications for stem cell therapy. Stem Cells Int 2016;2016:10.

Nombela-Arrieta C, Ritz J, Silberstein LE. The elusive nature and function of mesenchymal stem cells. Nat Rev Mol Cell Biol 2011;12(2):126-31.

Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 1968;6(2):230-47.

Hassiotou F, Beltran A, Chetwynd E, Stuebe AM, Twigger AJ, Metzger P, et al. Breastmilk is a novel source of stem cells with multilineage differentiation potential. Stem Cells 2012;30(10):2164-74.

Connell JP, Augustini E, Moise KJ Jr, Johnson A, Jacot JG. Formation of functional gap junctions in amniotic fluid-derived stem cells induced by transmembrane co-culture with neonatal rat cardiomyocytes. J Cell Mol Med 2013;17(6):774-81.

Nayernia K, Lee JH, Drusenheimer N, Nolte J, Wulf G, Dressel R, et al. Derivation of male germ cells from bone marrow stem cells. Lab Invest 2006;86(7):654-63.

Latifpour M, Shakiba Y, Amidi F, Mazaheri Z, Sobhani A. Differentiation of human umbilical cord matrix-derived mesenchymal stem cells into germ-like cells. Avicenna J Med Biotechnol 2014;6(4):218-27.

Sharma S, Venkatesan V, Prakhya BM, Bhonde R. Human mesenchymal stem cells as a novel platform for simultaneous evaluation of cytotoxicity and genotoxicity of pharmaceuticals. Mutagenesis 2015;30(3):391-9.

Scanu M, Mancuso L, Cao G. Evaluation of the use of human Mesenchymal Stem Cells for acute toxicity tests. Toxicol In Vitro 2011;25(8):1989-95.

Hennekens CH. Increasing burden of cardiovascular disease: Current knowledge and future directions for research on risk factors. Circulation 1998;97(11):1095-102.

Leite C, Silva NT, Mendes S, Ribeiro A, de Faria JP, Lourenço T, et al. Differentiation of human umbilical cord matrix mesenchymal stem cells into neural-like progenitor cells and maturation into an oligodendroglial-like lineage. PLoS One 2014;9(10):e111059.

Nuzzi R, Gunetti M, Rustichelli D, Roagna B, Fronticelli Bardelli F, Fagioli F, et al. Effect of in vitro exposure of corticosteroid drugs, conventionally used in AMD treatment, on mesenchymal stem cells. Stem Cells Int 2012;2012:946090.

Qasemian Lemraski M, Soodi M, Fakhr Taha M, Zarei MH, Jafarzade E. Study of lead-induced neurotoxicity in neural cells differentiated from adipose tissue-derived stem cells. Toxicol Mech Methods 2015;25(2):128-35.

Hennekens CH. Increasing burden of cardiovascular disease: Current knowledge and future directions for research on risk factors. Circulation 1998;97(11):1095-102.

Balana B, Nicoletti C, Zahanich I, Graf E M, Christ T, Boxberger S, Ravens U. 5-Azacytidine induces changes in electrophysiological properties of human mesenchymal stem cells. Cell Research 2006;16:949-60.

Dick E, Rajamohan D, Ronksley J, Denning C. Evaluating the utility of cardiomyocytes from human pluripotent stem cells for drug screening. Biochem Soc Trans 2010;38(4):1037-45.

Andersson H, KÃ¥gedal B, Mandenius CF. Monitoring of troponin release from cardiomyocytes during exposure to toxic substances using surface plasmon resonance biosensing. Anal Bioanal Chem 2010;398(3):1395-402.

Volkova M, Russell R 3rd. Anthracycline cardiotoxicity: Prevalence, pathogenesis and treatment. Curr Cardiol Rev 2011;7(4):214-20.

Asian J Pharm Clin Res, Vol 10, Issue 3, 2017, 25-36

Tripathy and Mohanty

Oliveira MS, Carvalho JL, Campos AC, Gomes DA, de Goes AM, Melo MM. Doxorubicin has in vivo toxicological effects on ex vivo cultured mesenchymal stem cells. Toxicol Lett 2014;224(3):380-6.

Ezquer F, Gutiérrez J, Ezquer M, Caglevic C, Salgado HC, Calligaris SD. Mesenchymal stem cell therapy for doxorubicin cardiomyopathy: Hopes and fears. Stem Cell Res Ther 2015;6(1):116.

Elliott NT, Yuan F. A review of three-dimensional in vitro tissue models for drug discovery and transport studies. J Pharm Sci 2011;100(1):59-74.

Guguen-Guillouzo C, Corlu A, Guillouzo A. Stem cell-derived hepatocytes and their use in toxicology. Toxicology 2010;270(1):3-9.

Kwon MJ, Kang SJ, Park YI, Yang YH, Bang SI, Park YH, et al. Hepatic differentiation of human adipose tissue-derived mesenchymal stem cells and adverse effects of arsanilic acid and acetaminophen during in vitro hepatic developmental stage. Cell Biol Toxicol 2015;31(3):149-59.

Cao X, Wu X, Frassica D, Yu B, Pang L, Xian L, et al. Irradiation induces bone injury by damaging bone marrow microenvironment for stem cells. Proc Natl Acad Sci U S A 2011;108(4):1609-14.

Cruet-Hennequart S, Drougard C, Shaw G, Legendre F, Demoor M, Barry F, et al. Radiation-induced alterations of osteogenic and chondrogenic differentiation of human mesenchymal stem cells. PLoS One 2015;10(3):e0119334.

Takehara Y, Yabuuchi A, Ezoe K, Kuroda T, Yamadera R, Sano C, et al. The restorative effects of adipose-derived mesenchymal stem cells on damaged ovarian function. Lab Invest 2013;93(2):181-93.

Published

01-03-2017

How to Cite

Tripathy, S., and P. K. Mohanty. “MESENCHYMAL STEM CELLS: AN INNOVATIVE APPROACH IN PHARMACOKINETICS”. Asian Journal of Pharmaceutical and Clinical Research, vol. 10, no. 3, Mar. 2017, pp. 25-36, doi:10.22159/ajpcr.2017.v10i3.16023.

Issue

Section

Review Article(s)