ASIAN JOURNAL OF PHARMACEUTICAL AND CLINICAL RESEARCH

Vol 7, Suppl 2, 2014

ISSN - 0974-2441

Research Article

IN VITRO LIPASE INHIBITORY EFFECT OF THIRTY TWO SELECTED PLANTS IN MALAYSIA

SIEW-LING ONG¹, SUGUNA PANEERCHELVAN¹, HOW-YEE LAI^{1*}, NALAMOLU KOTESWARA RAO²

¹School of Biosciences, Taylor's University, No 1 Jalan Taylor's, 47500 Subang Jaya, Malaysia.²School of Medicine, Taylor's University, No 1 Jalan Taylor's, 47500 Subang Jaya, Malaysia. Email: howyee.lai@taylors.edu.my

Received: 22 March 2014, Revised and Accepted: 10 May 2014

ABSTRACT

Objective: The objective of the study was to assess the lipase inhibitory activities of methanolic extracts from thirty two selected medicinal plants in Malaysia, for potential use in the treatment of obesity.

Methods: Methanolic extracts of these plants were evaluated for lipase inhibitory activity using porcine pancreatic lipase (PPL: triacylglycerol lipase, EC 3.1.1.3) and *p*-nitrophenyl butyrate in an *in vitro* assay. Standard phytochemical tests for alkaloids, tannins, saponins, glycosides, flavonoids and terpenoids were conducted.

Results: Among the thirty two local plant species examined, four plants exhibited inhibition activities of more than 15%. *Eleusine indica* showed the highest pancreatic lipase inhibitory activity of 31.36%, followed by *Myristica fragrans* (20.23%), *Melastoma candidum* (19.67%) and *Phyla nodiflora* (18.26%), respectively. There was no significant difference between activity produced by *Eleusine indica* methanolic extract and the standard drug orlistat.

Conclusion: Crude methanolic extracts of *Eleusine indica, Myristica fragrans, Melastoma candidum* and *Phyla nodiflora* are potential candidates as pancreatic lipase inhibitory agents.

Keywords: Eleusine indica, pancreatic lipase inhibitory activity, Melastoma candidum, Myristica fragrans, Phyla nodiflora, p-nitrophenyl butyrate

INTRODUCTION

Obesity is the leading cause of major diseases such as hypertension, Type 2 diabetes, coronary heart disease and ischemic stroke [1]. It is also known to increase the risk of cancer of the breast, colon, prostate, endometrium, kidney and gall bladder. According to World Health Organization (WHO), approximately 2.8 million people die each year and 35.8 million global disability-adjusted life years (DALYs) are due to overweight and obesity [2].

Despite the significant advances in understanding obesity and the development of effective pharmacologic treatments, obesity is still quite a challenge for many health care systems especially in the developed countries [3]. Several approaches have been implied for the treatment of obesity targeting at specific mechanisms, which include lipase inhibition, suppressive effect on food intake, stimulatory effects on energy expenditure, inhibition of adipocyte differentiation and the regulatory effect on lipid metabolism [4]. Amongst the approaches available, inhibition of pancreatic lipase which will retard the absorption of fatty acid, is the most widely studied mechanisms for the evaluation of natural products as antiobesity agents [4, 5].

The field of herbal medicines research has been gaining significant importance in the last few decades and the demand to use natural products in treatment of diseases is increasing worldwide. Natural product (nutraceutical) interventions are currently being investigated on a large-scale basis as potential treatments for obesity and weight management [6]. At present, the potential use of natural products for the treatment of obesity is still largely unexplored and it might be an excellent alternative strategy for the development of safe and effective anti-obesity drugs [7].

Malaysia is home to a diverse range of natural herbs which are potentially rich in bioactive compounds that can be developed for pharmaceuticals and nutraceutical purposes. There are 12,000 flowering plant species in Malaysia of which 1,300 species were said to be medicinal but only about one hundred species have been systematically evaluated for medicinal properties [8]. Ethnobotanical studies on various communities in Malaysia have revealed the use of various plants as remedies to cure many ailments and complaints [9, 10]. The aim of this research study was to screen for potential lipase inhibitory properties from selected medicinal plants found in Malaysia.

MATERIALS AND METHODS

Plant Materials and Chemicals

The plant materials selected for the research study were based on ethnopharmacological uses of local edible plants. The list of plants selected for the study is given in Table 1. Orlistat, *p*-nitrophenyl butyrate (PNPB) and porcine pancreatic lipase (PPL Type II, 3.1.1.3.) were purchased from Sigma-Aldrich Chemical Co. (St. Louis, MO, USA). All other chemicals and solvents are of analytical grade.

Plant samples were collected from a few locations: Putrajaya Botanical Garden, Perak Herb Garden and local plantations in Malaysia.

Extraction and Preparation of Crude Extracts

The plant material was cleaned from residual soil then freeze-dried. Methanol was added and the mixture was sonicated intermitently. The extracts were then filtered under reduced pressure. The residue was repeatedly extracted until the filtrate was light in colour. The filtrates were pooled and solvent was evaporated off. The extract was then again freeze-dried and kept at -20°C until further use. The percentage yield of the extract from fresh weight were recorded. The crude extract was dissolved in DMSO at a final concentration which will not affect enzyme activity within the total volume (2% v/v).

Phytochemical Analysis of Methanol Extract

The extracts obtained were subjected to standard tests for detection of alkaloids (Dragendorff's reagent) [43], tannins, saponins (frothing test) [44], glycosides (Molisch test) [45], flavonoids (Shinoda test) [44] and terpenoids (Salkowski test) [46].

No.	Scientific name	Common Name	Ethnomedicinal Usage	Ref.
1	Andrographis paniculata (Burm.f.) Wall. ex Nees	King of bitter; 'Hempedu	Relief heat, detoxification	[11]
-		bumi'		F /
2	Azadirachta indicaA.Juss.	Neem	Hot water extract taken for	[12]
			fever, diabetes, tonic,	
			refrigerant and anthelmintic	[4 0]
3	Blechnum orientale L.	Centipede fern, 'paku ikan'	Boils, blisters, abscesses and	[13]
			sores; diaphoretic for	
			stomach and urinary	
			bladder complains	F4 43
4	Cassia alata L.	Candle brush	Skin infections, constipation,	[14]
			inguinal nernia, intestinal	
			diabates	
F	Cling conthuc nutring I	Sabah analya graca (halalai	Inflammation wirel infection	[1]]
5	Chinacanthas hatans E.	sabali sliake grass, belalar	diabatas fouer and	[13]
		gajali	diaprihooa	
6	Coffee con	Coffee plant	Stimulant norving and	[16]
0	cojjeu spp.	conee plant	diurotic	[10]
7	Diananantaria linagria (Durm f.) Undarru	Climbing form false staghorn	Indigostion asthma and	[17]
/	Dicranopteris linearis (Burm.i.) Underw.	Climbing tern, taise stagnorn	indigestion, astrina and	[1/]
0	Eletterionois trileba (Comerce) Loos	(Carrai a shah)	For all using difference has deep	[10]
0	Eleccuriopsis critoba (Gagnep.) Loes.	Serarachen	facilitate digestion reduce	[10]
			cholostorol induce sweating	
			troatmont for vollow fovor	
			and hone ache	
0	Elausina indica (L.) Coorth	Coocograce	Urinary complaints and	[10]
9	Eleusine mulcu (L.) Gaertii.	GOOSEGLASS	fracture of bonos	[19]
10	Uikiagua mutakilia I	Cotton roco	Monorrhagia anaduma	[20]
10	HIDISCUS MULUDIIIS L.	Cotton rose	antidata damulaant	[20]
			antidote, demuicent,	
11	Uibiscus sabdariffa I	Pocello	Anticontic antrodiciac	[21]
11	HIDISCUS SUDUUTIJJU L.	Roselle	Antiseptic, apinouisiac,	[21]
			domulcont diurotic	
			nurgativo refrigerant	
			stomachic and tonic	
12	Malastoma candidum D. Don. Varalhiflorum	Forest starr Kim starr	Inflammation toothacho	[22]
12	Melascoma canalaam D. Don. Varaibinorum	Forest starr, Kill starr	wounds diarrhooa scar	[22]
			prevention and post-partum	
			recovery	
13	<i>Melilotus albus</i> Medik	Honey clover tree clover	Anaemia sedative	[23]
15	Memotus ulbus Meana		constinant and anti-	[20]
			rheumatic	
14	Morus alba L	Mulberry	Inflammation jaundice	[24]
		maiserry	henatitis, diabetes, fever.	[21]
			headache, hypertension,	
			dyslinidemia anthelminthic	
			and wound healing	
			properties	
15	Murrava koeniaii (Linn.) Spreng	Curry plant	Antiemetic, anti-diarrhoeal	[25]
10	han dya noonigi (zinii) oprong	Surf plane	dysentery, febrifuge, blood	[=0]
			purifier, tonic, stomachic	
			and flavouring agent in	
			culinary cooking	
16	Myristica fragrans Houtt	Nutmeg	Diarrhoea, mouth sores.	[26]
10	rightendagt agrand no aca		insomnia, stomachic,	[=0]
			stimulant and flatulence:	
			Essential oil used externally	
			for rheumatism	
17	Pandanus amaryllifolius Roxb.	Pandan leaves	Fever, headache. sore throat	[27]
			and toothache	
18	Passiflora edulis Sims	Passion fruit	Anxiety, nervousness and	[28]
10	-,		regulation of cholesterol	r1
			level	
19	Peperomia pellucida Kunth	Soft hone leaf shiny hush	Abdominal nain abscesses	[29]
17	. operonna ponaciaa Rantin	Sore Sone rear, sinny bush	acne, boils, colic, fatigue	[= 2]
			gout headache renal	
			disorders, and rheumatic	
			ioint nain	
20	Phyla nodiflora (L.) Greene	Frog fruit caneweed	Fever pains cough and joint	[30]
-0		i i og ir un, cape weeu	i ever, pams, cougn and joint	[30]

			pain	
21	Phyllanthus watsonii A. Shaw	Airy shaw	Diabetes, anaemia,	[31]
			bronchitis and hepatitis	
22	Piper sarmentosum Roxb.	'Kadok'	Treat bone fracture; water	[32]
			decoction of the roots to	
			relieve diabetes mellitus,	
			dysmenorrhoea and urinary	
			symptoms	
23	Plectranthus amboinicus (Lour.) Spreng.	Mexican mint	Skin ulceration, scorpion	[33]
			bite, skin allergy, wounds,	
			diarrhoea and fever	
24	Polygonum chinense L.	Chinese knotweed	Gastritis, dysentery,	[34]
			promoting blood circulation,	
			diuretic, dyspepsia and	
			haemorrhage	
25	Rhinacanthus nasutus (L.) Kurz.	Snake jasmine	Anti-pyretic and cough	[35]
26	Sambucus javanica Reinw. exBlume	Chinese elder	Diuretic, purgative and	[36]
	,		depurative	
27	Selaginella involvens(Sw.) Spring	Spikemoss	Infections and time	[37]
			immemorial	
28	Stachytarpheta australis Moldenke.	White porterweed	Purgative, vermifuge,	[38]
		-	expectorant, diuretic,	
			emmenagogue and general	
			tonic	
29	Syzygium aromaticum (L.) Merrill & Perry	Clove	Hypertension, nausea,	[39]
			diuretic, odontalgic,	
			stomachic, tonicardiac,	
			aromatic condiment and	
			improvement in digestion	
30	Vernonia amygdalina Delile	Bitter leaf	High blood pressure,	[40]
			diabetes, malaria, fever and	
			cough	
31	Vitex negundo L.	Five-leafed chaste tree	Astringent, cephalic,	[41]
			stomachic, alterant,	
			thermogenic, depurative,	
			antipyretic and bronchitis	
32	Youngia japonica L. (DC)	Oriental Hawksbeard	Painful urination, swelling,	[42]
			pain, heat, diarrhoea,	
			detoxification	

Pancreatic Lipase (PL) Inhibition Assay

Pancreatic lipase (PL) inhibitory activity was measured using the substrate p-nitrophenyl butyrate (PNPB), as described by Bustanji et al. (2011) with slight modification [47]. The enzyme solutions were prepared immediately before use by suspending crude porcine PL type II (Sigma, EC 3.1.1.3) in Tris-HCl buffer (50mMTris, 150 mM NaCl, 1 mM EDTA, 10 mM MOPS, pH 7.4) to give a concentration of 5 mg/mL (200 units/mL) and mixed using a stirrer for 15 min. The solution was then centrifuged at 1,500 rpm for 10 min and the clear supernatant was recovered. Plant extract with a concentration of 100 µg/mL were pre-incubated with 0.20 mL of PL solution for 5 min at 37°C before adding PNPB substrate (10 mM in acetonitrile). The volume was diluted to 1mL using the Tris-HCl buffer and absorbance was read at 410 nm against blank using denatured enzyme. The denatured enzyme was prepared by boiling the enzyme solution for 5 min. The PL activity was related to the rate of pnitrophenol release, which can be estimated from the slope of the linear segment of absorbance versus time profiles. Extracts were dissolved in DMSO at the final concentration not exceeding 1%, so as not to affect the enzyme activity. The percentage of residual activity of PL was determined for each compound by comparing the lipase activity of PL with and without the compounds. Orlistat, a known inhibitor of PL, was used as a positive control in the assay mixture.

The activities of the negative control were checked with and without the inhibitor. The inhibitory activity (I) was calculated as accordance to the formula below:

$$I\% = \left(1 - \frac{B-b}{A-a}\right) \times 100 \quad [48]$$

Where A is the activity of the enzyme without inhibitor, a is the negative control without the inhibitor, B is the activity of the enzyme with inhibitor, b is the negative control with inhibitor.

Statistical Analysis

All results were expressed as mean \pm standard deviation (n=3). Significance of difference from the control was determined by Posthoc Tukey's test (one way ANOVA) and independent T-test with a *p* value < 0.05 using SPSS software (version 16.0).

RESULTS AND DISCUSSION

Methanolic extracts of selected plants were prepared and investigated at a concentration of 100 μ g/mL using PL inhibition assay. The inhibitory activities are shown in Table 2 and extracts were sorted according to their percentage of inhibition. Among the forty four plant extracts examined, twenty seven crude extracts from different plant species showed inhibitory activity against porcine pancreatic lipase *in vitro*. Five of these extracts showed significant (p<0.05) pancreatic lipase inhibitory activity of more than 15%.

Highest inhibitory activity was shown by *Eleusine indica* i.e. $31.36 \pm 0.58\%$, which was comparable (p<0.05) to that of the reference orlistat ($34.49 \pm 5.39\%$), against pancreatic lipase (PL). Orlistat was used as the positive control as it is the only pancreatic-lipase inhibitor approved by US Food and Drug Administration and is currently used clinically to treat obesity. As a lipase inhibitor, orlistat acts by reducing absorption of fat. Nevertheless, orlistat is associated with several serious side effects which include oily stool, flatulence and abdominal cramping [49], which has prompted the search for other lipase inhibitors. In this study, the percentage of inhibition shown by orlistat was found to be $34.5 \pm 5.4\%$ which was slightly lower than that reported by Roh & Jung (2012) i.e. 42% [48].

Other plants with moderate activity (10-20%) were *Myristica fragrans* (mace, 18-20%), *Melastoma candidum* 20%, *Phyla nodiflora* 18%, *Dicranopteris linearis* 14% and *Myristica fragrans* (pericarp, 11%). There were nineteen crude extracts that showed weak

inhibitory activity (<10%) against PL. On the other hand, seventeen extracts promoted the activity of PL, such as *Vernonia amygdalina*, had increased the enzyme activity by 32.3 ± 5.2 %.

A study by Roh and Jung (2012) [49] on forty four plant extracts at concentration of 0.1 mg/mL, reported a range of 1.8-38.0 % inhibition compared to the positive control, orlistat of 42.0% inhibition; which was similar to the range of inhibition in our study, 0.3-31.4%, and orlistat of 34.5%. Other studies on a few plant species have indicated inhibitory effects at various concentration of extracts (0.1-5.0 mg/mL) e.g. as those shown by *llex paraguariensis* at 3 mg/mL [50], and of thirty seven traditional Chinese medicinal herbs at 0.2 mg/mL [51]. There was also a wide variation in the lipase inhibition exhibited by 37 traditional Chinese herbs ranged from -11.0 to 74.7% compared to the positive control, orlistat of 93.5% inhibition [51].

Qualitative phytochemical analysis was done on the four extracts that showed highest PL inhibition. Table 3 shows the presence of alkaloids, flavonoids, tannins, saponins and glycosides in these active extracts. The phytoconstituents present in the plant extracts could be responsible for its PL inhibition activity although their exact mode of action is still unclear. Previously, several potential pancreatic lipase inhibitory extracts from plants have been reported to contain saponins, polyphenols and terpenes [52].

Table 3: Phytochemical evaluation of four selected plant extracts

Plant Alkaloid Flavonoid Glycoside Saponin Tannin Terpenoid

E. indica +	-	-	-
M. fragrans			
(mace) +	-	+	+
M. candidum +	-	+	-
P. nodiflora - + +	-	-	-

Note: (+) present; (-) absent

No.	Scientific name	Plant Part	Family	Inhibition (%)
1	Eleusine indica	Aerial part	Poaceae	31.36 ± 0.58
2	Myristica fragrans	Ripe female mace	Myristicaceae	20.23 ± 0.25*
3	Melastoma candidum	Aerial part	Melatomataceae	19.67 ± 0.50*
4	Phyla nodiflora	Whole	Verbenaceae	18.26 ± 2.84*
5	Myristica fragrans	Ripe male mace	Myristicaceae	17.99 ± 0.74*
6	Dicranopteris linearis	Aerial part	Gleicheniaceae	14.34 ± 1.90*
7	Myristica fragrans	Ripe male pericarp	Myristicaceae	11.32 ± 0.30*
8	Mvristica fragrans	Ripe female	Mvristicaceae	$10.33 \pm 0.32^*$
	, , , ,	pericarp	5	
9	Peperomia pellucida	Leaf	Piperaceae	8.62 ± 1.79*
10	Coffea spp.	Leaf	Rubiaceae	7.85 ± 1.39*
11	Younaia japonica	Whole	Asteraceae	6.90 ± 2.37*
12	Myristica fragrans	Green female mace	Myristicaceae	$4.90 \pm 0.34^*$
13	Hibiscus sabdariffa	Calyx	Malvaceae	4.23 ± 1.33*
14	Polvaala paniculata	Whole	Polvgalaceae	4.17 ± 1.37*
15	Hibiscus sabdariffa	Leaf	Malvaceae	$3.71 \pm 0.37^*$
16	Hibiscus mutabilis	Leaf	Malvaceae	$2.85 \pm 0.64^*$
17	Myristica fragrans	Female leaf	Myristicaceae	2.07 ± 1.95*
18	Myristica fragrans	Green female	Myristicaceae	$2.02 \pm 0.48^*$
	, , ,	pericarp	2	
19	Sambucus javanica	Leaf	Adoxaceae	1.89 ± 1.27*
20	Elettariopsis triloba	Leaf	Zingiberaceae	$1.65 \pm 0.77^*$
21	Passiflora edulis	Pulp & seed	Passifloraceae	$1.63 \pm 0.32^*$
23	Blechnum orientale	Leaf	Blechnaceae	$1.26 \pm 0.29^*$
24	Morus alba	Leaf	Moraceae	0.78 ± 1.38*
25	Azadirachta indica	Leaf	Meliaceae	0.51 ± 1.08*
26	Myristica fragrans	Mixed leaf	Myristicaceae	$0.32 \pm 0.50^*$
27	Myristica fragrans	Male leaf	Myristicaceae	$0.26 \pm 0.25^*$
28	Passiflora edulis	Leaf	Passifloraceae	$-0.09 \pm 0.44^*$
29	Stachytarpheta australis	Whole	Verbenaceae	-1.51 ± 0.36*
30	Cassia alata	Leaf	Fabaceae	-1.77 ± 0.39*
31	Selaginella involvens	Whole	Selaginellaceae	-1.97 ± 2.70*
32	Murraya koenigii	Leaf	Rutaceae	-4.58 ± 1.63*
33	Rhinacanthus nasutus	Leaf	Acanthaceae	-4.70 ± 1.09*
34	Polygonum chinese	Aerial part	Polygonaceae	-5.48 ± 0.68*
35	Pandanus amaryllifolius	Leaf	Pandanaceae	-5.70 ± 2.21*
36	Phyllanthus watsonii	Aerial part	Euphorbiaceae	-6.00 ± 0.99*
37	Syzygium aromaticum	Leaf	Myrtaceae	$-6.25 \pm 6.10^*$
38	Plectranthus amboinicus	Leaf	Lamiaceae	-6.30 ± 1.68*
39	Piper sarmentosum	Leaf	Piperaceae	$-6.64 \pm 4.41^*$
40	Passiflora edulis	Exocarp	Passifloraceae	$-8.23 \pm 0.30^{*}$
41	Vitex negundo	Leaf	Lamiaceae	-10.91 ± 1.78*
42	Andrographis paniculata	Leaf	Acanthaceae	$-14.89 \pm 5.01^*$
43	Clinacanthus nutans	Leaf	Acanthaceae	-22.56 ± 0.83*
44	Vernonia amygdalina	Leaf	Asteraceae	-32.27 ± 5.22*
45	Orligtat (positivo control)			31.10 ± 5.30

 Table 2: Pancreatic lipase (PL) inhibitory activity of methanol extracts of sampled plants

*p < 0.05 compared with control orlistat, data presented as median \pm standard deviation (n = 3), and "-" indicates a promotion of pancreatic lipase activity. The final concentration of the crude extracts was 100 µg/mL.

Obesity is the major cause of diseases like diabetes [53] and many others. Since orlistat is the only approved drug for as an effective pancreatic lipase inhibitor, extensive studies has been carried out to develop alternative drugs. Several studies done on different phytochemicals had given a brief insight of its mechanisms with its anti-obesity effect, such as extract of Ziziphus mauritiana Lam bark powder had shown significant inhibition of lipase activity in vivo in high fat diet induced obesity rats [54]. Another study conducted by Lee et al. (2013) [55] had proposed stilbene derivative from Parthenocissus tricuspidata showed strong inhibitory effect on adipocyte differentiation. Statistically significant results were obtained in this in vitro study which defines the possibility of potential pancreatic lipase inhibitors. Further studies are needed, via in vivo or cell culture model to further confirm the inhibitory activities of these plants and to elucidate the effective phytochemicals in these potential plants.

CONCLUSION

In this study, it was shown that the extracts of *Eleusine indica*, *Myristica fragrans, Melastoma candidum* and *Phyla nodiflora* were found to be possible candidates for further studies to isolate potential pancreatic lipase inhibitor among the thirty two different plants screened. According to our literature review, extracts of *Eleusine indica*, *Myristica fragrans*, *Melastoma candidum* and *Phyla nodiflora* have not been reported to have pancreatic lipase inhibition activities. Further studies are needed in order to isolate, identify and characterize phytoactive compounds to further define the nature of their lipid-lowering activity and verifying the potency of these via adipocytes or *in vivo* studies.

ACKNOWLEDGEMENT

We would like to acknowledge funding support from Taylor's University, Malaysia under the Taylor's Research Grant Scheme (No. TRGS/2/2011/SOBS/012).

REFERENCES

- 1. Kopelman PG. Obesity as a medical problem. Nature 2000; 404 (6778): 635-43.
- World Health Organization (WHO). 2013. Fact Sheets: Obesity and overweight[Cited: 2013 January 9]. Available from: http://www.who.int/mediacentre/factsheets/fs311/en/index. html.
- Cooke D, Bloom S. The obesity pipeline: current strategies in the development of anti-obesity drugs. Nat Rev Drug Discovery 2006; 5: 919-31.
- 4. Yun JW. Possible anti-obesity therapeutics from nature A review. Phytochem 2011; 71: 1625-41.
- Foster-Schubert KE, Cummings DE. Emerging therapeutic strategies for obesity. Endocr Rev 2006; 27: 779-93.
- Kasbia, Gursevak S. Functional foods and nutraceuticals in the management of obesity. Nutrition & Food Science 2005; 35 (5): 344-52.
- 7. Mukherjee M. Human digestive and metabolic lipases a brief review. J Mol Catal B Enzym 2003; 22: 369-76.
- Jamal P, Barkat AA, Amid A. Distribution of phenolics in various Malaysian medicinal plants. J Applied Sciences 2010; 10: 2658-62.
- 9. Ahmad FB, Holdsworth DK. Medicinal Plants of Sabah, East Malaysia Part I. Informa Healthcare 2003; 41: 340-46.
- 10. Kulip J. An ethnobotanical survey of medicinal and other useful plants of Muruts in Sabah, Malaysia. Telopea 2003; 10: 81-98.
- 11. Deng WL. Preliminary studies on the pharmacology of the Andrographis product dihydroandrographolide sodium succinate. Newsletter Chinese Herbal Medicine 1978; 8: 26-8.
- Hashmat I, Azad H, Ahmed A. Neem (*Azadirachta indica* A. Juss)

 A Nature's Drugstore: An overview. International Research J Biological Sciences 2012; 1: 76-9.
- Lai HY, Lim YY, Kim KH. *Blechnum Orientale* Linn a fern with potential as antioxidant, anticancer and antibacterial agent. BMC Complement Altern Med 2010; 10: 15.

- 14. Chatterjee S, Chatterjee S, Dutta S. An overview on the ethnophytopathological studies of *Cassia alata* an important medicinal plant and the effect of VAM on its growth and productivity. International Journal of Research in Botany 2012; 2(4): 13-9.
- 15. P'ng XW, Akowuah GA, Chin JH. Acute oral toxicity study of *Clinacanthus nutans* in mice. International Journal of Pharmaceutical Sciences and Research 2012; 3: 4202-5.
- Mishra SB, Dwivedi S, Shashi A, Prajapati K. Ethnomedicinal uses of some plant species by ethnic and rural peoples of the Salem district of Tamilnadu with special reference to the conservation of vanishing species. Ethnobotanical Leaflets 2008; 12: 873-8.
- 17. Perumal G. Ethnomedicinal use of Pteridophyte from Kolli Hills, Namakkal district, Tamil Nadu, India. Ethnobotanical Leaflets 2010; 14: 161-72.
- Jabatan Pertanian Negeri Perak. Koleksi tumbuhan herba terpilih di taman herba negeri Perak (Edisi 1): Jabatan Pertanian Negeri Perak dan Taman Herba Negeri Perak, 2012, p. 140.
- 19. Barukial J, Sarmah JN. Ethnomedicinal plants used by the people of Golaghat District, Assam, India. International Journal of Medicinal and Aromatic Plants 2011; 1(3): 203-11.
- 20. Buragohain J. Ethnomedicinal plants used by the ethnic communities of Tinsukia District of Assam, India. Recent Research in Science and Technology 2011; 3(9): 31-42.
- Mahadevan NS, Kamboj P. *Hibiscus sabdariffa* Linn. An overview. Natural Product Radiance 2009; 8:77-83.
- Omar SNC, Ong JA, Khairoji KA, Chin SC, Hamid M. Potentials of Melastoma malabathricum Linn. flower and fruit extracts as antimicrobial infusions. Am J Plant Sci 2012; 3: 1127-34.
- 23. Altundag E, Ozturk M. Ethnomedicinal studies on the plant resources of east Anatolia, Turkey. Procedia Soc Behav Sci 2011; 19: 756-777.
- Yang X, Yang L, Zheng H. Hypolipidemia and antioxidant effects of mulberry (*Morusalba* L.) fruit in hyperlipidaemia rats. Food Chem Toxicol 2010; 48: 2374-9.
- Ajay S, Rahul S, Sumit G, Paras M, Mishra A, Gaurav A. Comprehensive review: *Murraya koenigii* Linn. Asian J Pharmacy and Life Science 2011; 1: 417-25.
- Ibrahim TA, Opawale BO, Oyinloye JMA. Antibacterial activity of herbal extracts against multi drug resistant strains of bacteria from clinical origin. Life Sciences Leaflets 2011; 15: 490-8.
- Takayama H, Ichikawa T, Kitajima M, Aimi N, Lopez D, Nonato MG. A new alkaloid, pandanamine; finding of an anticipated biogenetic intermediate in *Pandanus amaryllifolius* Roxb. Tetrahedron Lett 2001; 42: 2995-6.
- 28. Barbalho SM, de Souza MDSS, de Paula e Silva JC, Mendes CG, de Oliveira GA, Costa T *et al.* Yellow passion fruit rind (*Passiflora edulis*): an industrial waste or an adjuvant in the maintenance of glycemia and prevention of dyslipidemia? J Diabetes Research & Clinical Metabolism 2012; 1.
- 29. Khan MR, Omoloso, AD. Antibacterial activity of *Hydrophila stricta* and *Peperomia pellucida*. Fitoterapia 2002; 73: 251-4.
- Padal SB, Ramakrishna H, Devender R. Ethnomedicinal studies for endemic diseases by the tribes of Munchingiputtu Mandal, Visakhapatnam district, Andhra Pradesh, India.International J Medi & Arom Plants 2012; 2(3): 453-9.
- Ramasamy S, Abdul Wahab N, Zainal Abidin N, Manickam S. Effect of extracts from *Phyllanthus watsonii* airy shaw on cell apoptosis in cultured human breast cancer MCF-7 cells. Exp Toxicol Pathol 2013; 65 (3): 341-349.
- 32. Estai MA, Suhaimi F, Shuid AN, Das S, Soelaiman I. The use of traditional treatment modalities with special mention of *Piper sarmentosum* in treatment of bone fracture. J Medicinal Plants Research 2011; 5: 7132-9.
- 33. Lukhoba CW, Simmonds MSJ, Paton AJ. Plectranthus: A review ethnobotanical uses. J Ethnopharmacol 2006; 103: 1-24.
- Sajem AL, Gosai K. Traditional use of medicinal plants by the Jaintia tribes in North Cachar Hills district of Assam, northeast India. J Ethnobiol Ethnomed 2006; 2: 33.

- Alagesaboopathi C. Ethnomedicinal plants used as medicine by the Kurumbatribals in Pennagaram region, Dharmapuri district of Tamil Nadu, India. Asian J Experimental Sci 2011; 2(1): 140-2.
- Pfoze NL, Kumar Y, Myrboh B. Survey and assessment of ethnomedicinal plants used in Senapati district of Manipur State, Northeast India. Phytopharmacology 2012; 2(2): 285-311.
- Gayathri V, Asha VV, Subramoniam A. Preliminary studies on the immunomodulatory and antioxidant properties of *Selaginella* species. Indian J Pharmacol 2005; 37 (6): 381-5.
- 38. Souza Silva P, Yoko Suzuki E, Moreira AP, Barbosa Raposo NR, Almeida Alves TM, FacioViccini L. Stachytarpheta gesneriodes Cham.: chemical composition of hexane fraction and essential oil, antioxidant and antimicrobial activities. Boletín Latino americano y del Caribe de Plantas Medicinales y Aromáticas 2012; 11(6): 542 - 8
- Bhowmik D, Kumar KPS, Yadav A, Srivastava S, Paswan S, Dutta AS. Recent trends in Indian traditional herbs *Syzygium aromaticum* and its health benefits. J Pharmacogn Phytochem 2012; 1(1): 6-17.
- Adaramoye OA, Akintayo O, Fafunso MA. Lipid lowering effects of methanolic extract of *Vernonia amigdalina* leaves in rats fed on high cholesterol diet. J Vascular Health and Risk Management 2008; 4(1): 235-41.
- 41. Tandon VR. Medicinal uses and biological activities of *Vitex negundo*. Natural Product Radiance 2005; 4(3): 162-5.
- 42. Pathan HK, Mishra S, Verma NK. Phytochemical constituents and pharmacological importance of *Youngia japonica*: A review. Asian J Phamaceutical Education and Research 2012; 1(1): 1-9.
- 43. Nayak BS, Sandiford S, Maxwell A. Evaluation of the woundhealing activity of ethanolic extract of *Morinda citrifolia* L. leaf. Advance Access Publication 2009; 6: 351-6.
- 44. Kaur GJ, Arora DS. Antibacterial and phytochemical screening of *Anethum graveolens*, *Foeniculum vulgare* and *Trachyspermum ammi*. BMC Complement Altern Med 2009; 9: 1-10.
- 45. Saha S, Subrahmanyam EVS, Kodangala C, Shastry S. Isolation and characterization of triterpenoids and fatty acid ester of triterpenoid from leaves of *Bauhinia variegata*. Der PharmaChemica 2011; 3: 28-37.
- Egwaikhide PA, Gimba CE. Analysis of the phytochemical content and anti-microbial activity of *Plectranthus glandulosis* whole plant. Middle-East J Scientific Research 2007; 2: 135-8.
- Bustanji Y, Al-Masri IM, Mohammad M, Hudaib M, Tawaha K, Tarazi H, *et al.* Pancreatic lipase inhibition activity of trilactoneterpenes of *Ginkgo biloba*. J Enzyme Inhib Med Chem2011; 26(4): 453-9.
- 48. Roh C, Jung U. Screening of crude plant extract with antiobesity activity. Int J Mol Sci 2012; 13: 1710-9.
- 49. Kim SK, Kim YM, Hong MJ, Rhee HI. Studies on the inhibitory effect of *Eugenia aromaticum* extract on pancreatic lipase. Agric Chem Biotechnol 2005; 48: 84-8.
- Martins F, Noso TM, Porto VB, Curiel A, Gambero A, Bastos DHM *et al.* Maté tea inhibits *in vitro* pancreatic lipase activity and has hypolipidemic effect on high-fat diet-induced obese mice. Integrative Physiology 2009; 18: 42-7.
- Zheng CD, Duan YQ, Gao JM, Ruan ZG. Screening for anti-lipase properties of 37 traditional Chinese medicinal herbs. J Chinese Medicine Association 2010; 73: 319-33.
- 52. Birari RB, Bhutani KK. Pancreatic lipase inhibitors from natural sources: unexplored potential. Drug Discov Today 2007; 12: 19-20.
- Nalamolu KR, Krupavaram B, Sreenivas PS, Kanuparthy SR. Antidiabetic activity of *Orthosiphon stamineus* Benth roots in streptozotocin induced Type 2 diabetic rats. Asian J Pharm Clin Res 2014; 7(1): 168-173.
- Mandavi D, Sushant S, Kishori GA, Mohan W et al. Anti-obesity activity of *Ziziphus mauritiana*: A potent pancreatic lipase inhibitor. Asian J Pharm Clin Res 2013; 6(2): 149-153.
- 55. Lee SH, Liu Q, Hwang BY, Lee MK. Inhibitory effects of stilbene derivatives from *Parthenocissus tricuspidata* on adipocyte differentiation and pancreatic lipase. Nat Prod Commun 2013; 8(10): 1439-1441.

ABBREVIATIONS

PL- Pancreatic lipase; PNPB - p-nitrophenyl butyrate