ANTIMICROBIAL EFFECTS OF INDONESIAN MEDICINAL PLANTS EXTRACTS ON PLANKTONIC AND BIOFILM GROWTH OF PSEUDOMONAS AERUGINOSA AND STAPHYLOCOCCUS AUREUS

Authors

  • Sylvia U. T. Pratiwi Department of Molecular Microbiology and Biotechnology, Institute Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands Department of Pharmaceutical Biology, Faculty of Pharmacy, Gadjah Mada University, Sekip Utara, Yogyakarta 55281, Indonesia Centre for Natural Anti-infective Research (CNAIR), Faculty of Pharmacy, Gadjah Mada University, Sekip Utara, Yogyakarta 55281, Indonesia
  • Ellen L. Lagendijk Department of Molecular Microbiology and Biotechnology, Institute Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
  • Triana Hertiani Department of Pharmaceutical Biology, Faculty of Pharmacy, Gadjah Mada University, Sekip Utara, Yogyakarta 55281, Indonesia Centre for Natural Anti-infective Research (CNAIR), Faculty of Pharmacy, Gadjah Mada University, Sekip Utara, Yogyakarta 55281, Indonesia
  • Sandra De Weert Koppert Biological Systems, Veilingweg 14, 2650 AD Berkel en Rodenrijs, The Netherlands.
  • Cornellius A. M. Leiden University
  • J. J. Van Den Hondel Leiden University

Keywords:

Medicinal plants, Antibiofilm, Pseudomonas aeruginosa PAO1, Staphylococcus aureus Cowan I

Abstract

Objective: The increasing rates of antibiotic-resistant microbial infections requires continuous development of new antimicrobial agents. Moreover, microbial biofilms exhibit elevated resistance to most antimicrobial drugs and the host defense systems, which often results in persistent and difficult-to-treat infections. The discovery of anti-infective agents which are active against both planktonic and biofilm microbial are consequently required to deal with these biofilm-mediated infections. The aim of this study is to evaluate the activity of Indonesian medicinal plants extracts on planktonic and biofilm growth of Pseudomonas aeruginosa PAO1 and Staphylococcus aureus Cowan I.

Methods: Fifty four (54) ethanol extracts were obtained from a variety of known Indonesian medicinal plants. The growth inhibitory concentration (MIC), effects on biofilm formation and biofilm breakdown, and biofilm architecture in the absence and presence of the extracts by confocal laser-scanning microscopy along with LIVE/DEAD staining was performed.

Results: Plantextracts showed an inhibitory effect on planktonic growth of these bacteria and also on their biofilm formation. At a concentration as low as 0.12 mg/ml, biofilm formation of P. aeruginosa PAO1 and S. aureus Cowan I is inhibited by 5 plant ethanol extracts: Kaempferia rotunda L., Caesalpinia sappan L., Cinnamomum burmanii Nees ex Bl., C. sintoc and Nymphaea nouchali Burm. f. Limited bacteriostatic activity was evident.

Conclusion: The results clearly indicate the extracts obtained are interesting sources of putative antibiofilm agents. This research can contribute to the development of new strategies to prevent and treat biofilm infections.

Downloads

Download data is not yet available.

Author Biography

Cornellius A. M., Leiden University

Department of Molecular Microbiology and Biotechnology

References

Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious disease. Nat Rev Microbiol 2004;2:95–108.

Jones S. Biofilms: how does your biofilm grow? Nat Rev Microbiol 2007;5:168-9.

Jefferson KK. What drives bacteria to produce a biofilm? FEMS Microbiol Lett 2004;236(2):163-73.

Richards JJ, Melander C. Controlling bacterial biofilms. Chem Bio Chem 2009;10(14):2287-94.

Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 2002;15(2):167–93.

O’grady NP, Alexander M, Burns LA, Geberding JL, Heard SO, Maki DG, et al. Guidelines for the prevention of intravascular catheter-related infections. Pediatr 2002;110:51.

Kim HS. Do not put too much value on conventional medicines. J Ethnopharmacol 2005;100(1, Suppl 2):37-9.

Palombo E. Phytochemicals from traditional medicinal plants used in the treatment of diarrhea: modes of action and effects in intestinal function. Phytother Res 2006;20(9):717–24.

ICSBD. Indonesian country study in biological diversity. Ministry of State for Population and Environment. Jakarta, Indonesia; 1993.

Sunesi I, Wiryono. The diversity of plant species utilized by villagers living near protected forest in Kepahiang district, Bengkulu province. J Ilmu-Ilmu Pertanian Indonesia 2007;3:432–9.

Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB, Bagge N, et al. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 2003;22(15):3803–15.

Shufford JA, Stecklberg JM, Patel R. Effects of fresh garlic extract on Candida albicans biofilm. Antimicrob Agents Chemother 2005;49(1):473.

He M, Du M, Fan M, Bia Z. In vitro activity of eugenol against Candida albicans biofilms. Mycopathologia 2007;163(3):137-43.

Ponnusamy K, Paul D, Kweon JH. Inhibition of quorum sensing mechanism and Aeromonas hydrophila biofilm formation by vanillin. Environ Eng Sci 2009;26(8):1359-63.

Francolini I, Norris P, Piozzi A, Donelli G, Stoodley P. Usnic acid, a natural antimicrobial agent able to inhibit bacterial biofilm formation on polymer surfaces. Antimicrob Agents Chemother 2004;48(11):4360-5.

Nawawi A, Nakamura N, Hattori M, Kurokawa M, Shiraki K. Inhibitory effects of Indonesian medicinal plants on the infection of herpes simplex virus type 1. Phytother Res 1999;13(1):37-41.

Sangat HM, Larashati I. Some ethnophytomedical aspects and conservation strategy of several medicinal plants in Java, Indonesia. Biodiversitas 2002;3(2):231-35.

Batugal, Pons A, Jayashree K, Lee SY, Jeffrey TO. editors. Medicinal plants research in Asia. Vol 1: The framework and project workplans. International Plant Genetic Resources Institute–Regional Office for Asia, The Pacific and Oceania (IPGRI-APO), Serdang, Selangor DE, Malaysia: Future Harvets; 2004.

Elfahmi, Woerdenbag HJ, Kayser O. Jamu: Indonesian traditional herbal medicine towards rational phytopharmacological use. J Herb Med 2014;4(2):51-73.

Salie F, Eagles PFK, Leng HMJ. Preliminary antimicrobial screening of four South African Asteraceae species. J Ethnopharmacol 1996;52(1):27-33.

Zakaria ZA, Jais AMM, Mastura M, Jusoh SHM, Mohamed AM, Jamil NMS, et al. In vitro antistaphylococcal activity of the extracts of several neglected plants in Malaysia. Int J Pharmacol 2007;3(5):428-31.

Farooq S, Shakeel-u-Rehman, Dangroo NA, Priya D, Banday JA, Sangwan OL, et al. Isolation, cytotoxicity evaluation and HPLC-quantification of the chemical constituents from Prangos pabularia. PLoS One 2014;9(10):e108713.

Cechinel-Filfo V. Plant bioactives and drug discovery: principles, practise and perspective. Hoboken, NJ, USA: John Wiley and Sons, Inc; 2002. p. 364-73.

Clinical and Laboratory Standard Institute (CLSI). Performance standards for antimicrobial susceptibility testing: seventeenth informational supplement. CLSI document M100-S17. Wayne, Pennsylvania USA: Clinical and Laboratory Standard Institute; 2007.

Quave CL, Plano LRW, Pantuso T, Benett BC. Effects of extracts from Italian medicinal plants on planktonic growth, biofilm formation and andherence of methicillin-resistant Staphylococcus aureus. J Ethnopharmacol 2008;118(3):418–28.

Sandasi M, Leonard CM, Viljoen AM. The in vitro antibiofilm activity of selected culinary herbs and medicinal plants against Listeria monocytogenes. Lett Appl Microbiol 2009;50(1):30-5.

Nostro A, Roccaro AS, Bisignano G, Marino A, Cannateli MA, Pizzimenti FC, et al. Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Med Microbiol 2007;56(Pt 4):519-23.

Jin Y, Zhang T, Samaranayake YH, Fang HH, Yip HK, Samaranayake LP. The use of new probes and stains for improved assessment of cell viability and extracellular polymeric substances in Candida albicans biofilms. Mycopathologia 2005;159(3):353-60.

Dusane DH, Dam S, Nancharaiah YV, Kumar AR, Venugopalan, VP, Zinjarde SS. Disruption of Yarrowia lipolytica biofilms by rhamnolipid biosurfactant. Aquatic Biosystems 2012;8:17.

Zhang Q, Wu J, Hu Z, Li D. Induction of HL-60 apoptosis by ethyl acetate extract of Cordyceps sinensis fungal mycelium. Life Sci 2004;75(24):2911-9.

Kosar M, Bozan B, Temelli F, Baser KHC. Antioxidant activity and phenolic composition of sumac (Rhus coriaria L.) extracts. Food Chem 2007;103(3):952-59.

Rios JL, Recio MC. Medicinal plants and antimicrobial activity. J Ethnopharmacol 2005;100:80-4.

Niu C, Gilbert ES. Colorimetric method for identifying plant essential oil components that affect biofilm formation and structure. Appl Environ Microbiol 2004;70(12):6951-6.

Stewart PS. Mechanism of antibiotic resistance in bacterial biofilms. Int J Med Microbiol 2002;292(2):107-13.

Sharon N, Ofek I. Safe as mother’s milk: carbohydrates as future anti-adhesion drugs for bacterial disease. Glycoconjugate J 2002;17:659-64.

Klueh I, Wagner V, Kelly S, Johnson A, Bryers JD. Efficacy of silver-coated fabric to prevent bacterial colonization and subsequent device-based biofilm formation. J Biomed Mater Res 2000;53(6):621-31.

Dibdin GH, Assinder SJ, Nichols WW, Lambert PA. Mathematical model of β-lactam penetration into a biofilm of Pseudomonas aeruginosa while undergoing simultaneous inactivation by released β-lactamases. J Antimicrob Chemother 1996;38:757-69.

Lewis K. Riddle of biofilm resistance. Antimicrob Agents Chemother 2001;45(4):999-1007.

Mohanty JP, Nath LK, Bhuyan N, Mariappan G. Evaluation of antioxidant potential of Kaempferia rotunda Linn. Indian J Pharm Sci 2008;70(3):362–4.

Jantan IB, Yalvema MF, Ayop N, Ahmad AS. Constituents of the essential oils of Cinnamomum sintoc Blume from a mountain forest of peninsular Malaysia. Flavour Fragrance J 2005;20(6):601-4.

Ooi LSM, Li Y, Kam S, Wang H, Wong EYL, Ooi VE. Antimicrobial activities of cinnamon oil and cinnamaldehyde from the chinese medicinal herb Cinnamomum cassia Blume. Am J Chin Med 2006;34(3):511-22.

Shan B, Cai YZ, Brooks JD, Corke H. Antibacterial properties and major bioactive components of cinnamon stick (Cinnamomum burmannii): activity against foodborne pathogenic bacteria. J Agri Food Chem 2007;55(14):5484–90.

Gende LB, Floris I, Fritz R, Eguaras MJ. Antimicrobial activity of cinnamon (Cinnamomum zeylanicum) essential oil and its main components against Paenibacillus larvae from Argentine. Bull Insect 2008;61(1):1-4.

Nuryastuti T, Mei HVD, Busscher HJ, Iravati S, Aman AT, Krom BP. Effect of cinnamon oil on icaA expression and biofilm formation by Staphylococcus epidermidis. Appl Environ Microbiol 2009;75(21):6850-5.

Gill AO, Holley RA. Mechanisms of bactericidal action of cinnamaldehyde against Listeria monocytogenes and of eugenol against L. monocytogenes and Lactobacillus sakei. Appl Environ Microbiol 2004;70(10):5750-5.

Huang DF, Xu JG, Liu JX, Zhang H, Hu QP. Chemical constituents, antibacterial activity and mechanism of action of the essential oil from Cinnamomum cassia bark against four food-related bacteria. Microbiol 2014;83(4):357-65.

Namikoshi M, Saitoh T. Homoisoflavonoids and related compounds: iv Absolute configurations of homoisoflavonoids from Caesalpinia sappan L. Chem Pharm Bull 1987;35:3597–602.

Nagai M, Nagumo S, Lee SM, Eguchi I, Kawai KI. Protosappanin A, a novel biphenyl compound from sappan lignum. Chem Pharm Bull 1986;34:1–6.

Xu HX, Lee SF. The antibacterial principle of Caesalpinia sappan. Phytother Res 2004;18(8):647–51.

Cushnie TPT, Lamb AJ. Antimicrobial activity of flavonoids. Int J Antimicrob Agents 2005;26(2):343-56.

Rasmussen TB, Bjarnsholt T, Skindersoe ME, Hentzer M, Kristoffersen P, KÈte M. Screening for quorum sensing inhibitor (QSI) by use of a novel genetic system, the QSI selector. J Bacteriol 2005;187(5):1799-814.

Manefield M, de Nys R, Kumar N, Read R, Givskov M, Steinberg P, et al. Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiol 1999;145(2):283-91.

Ogunlana E, Hoeglund G, Onawunmi O. Effects of lemongrass oil on the morphological characteristics and peptidoglycan synthesis of Escherichia coli cells. Microbios 1987;50(202):43-59.

Cox S, Mann C, Markham L, Bell H, Gustafson J. The mode of action of the essential oil of Melaleuca alternifolia (tea tree oil). J Appl Microbiol 2000;88(1):170-5.

Türi M, Türi S, Koljalg R. Influence of aqueous extracts of medicinal plants on surface hydrophobicity of Escherichia coli strains of different origin. APMIS 1997;105(12):956-62.

Das MP. Effect of cell surface hydrophobicity in microbial biofilm formation. Eur J Exp Biol 2014;4(2):254-6.

Traba C, Liang JF. Suscetibility of Staphylococcus aureus bofilm to reactive discharge gases. Biofouling 2011;27(7):763-72.

Published

01-04-2015

How to Cite

Pratiwi, S. U. T., E. L. Lagendijk, T. Hertiani, S. D. Weert, C. A. M., and J. J. V. D. Hondel. “ANTIMICROBIAL EFFECTS OF INDONESIAN MEDICINAL PLANTS EXTRACTS ON PLANKTONIC AND BIOFILM GROWTH OF PSEUDOMONAS AERUGINOSA AND STAPHYLOCOCCUS AUREUS”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 7, no. 4, Apr. 2015, pp. 183-91, https://journals.innovareacademics.in/index.php/ijpps/article/view/4021.

Issue

Section

Original Article(s)