Asian Journal of Pharmaceutical and Clinical Research Vol 5, Issue 1, 2012 ISSN - 0974-2441

Research Article

FORMULATION AND EVALUATION OF SUSTAINED RELEASE FLOATING TABLETS OF PIOGLITAZONE EMPLOYING OLIBANUM GUM AND HPMC

CHINNA DEVI GAJULA 1*, BHASKARA RAO RAYANI 2

¹Department of Pharmacy, Palamuru University, Bandameedipally, Mahabubnagar-509001, Andhra Pradesh, India, ²JNTU Research supervisor, NATCO Pharma Ltd, Kothur, Mahabubnagar-509001, Andhra Pradesh, India. Email: gchinnadevi@gmail.com

Received: 17 October 2011, Revised and Accepted: 12 December 2011

ABSTRACT

The objective of the study is to formulate and evaluate floating tablets of pioglitazone employing olibanum gum, a natural gum resin in comparison to HPMC K15 M, a synthetic cellulose derivative. Floating tablets of pioglitazone were prepared employing olibanum gum and HPMC K15 M as matrix formers, sodium bicarbonate as gas generating agent and bees wax and ethyl cellulose as floating enhancers and the tablets were evaluated for *In vitro* buoyancy and drug release characteristics.

The floating characteristics of the formulations which contained sodium bicarbonate (15%) alone were not satisfactory with both the two polymers and need to be improved. Increasing the strength of sodium bicarbonate from 15% to 20% has not much improved the floating characteristics. Addition of beeswax (15%) and ethyl cellulose (5%) has significantly enhanced the buoyancy of the tablets formulated with both the two polymers. Pioglitazone release from the floating tablets prepared was slow and spread over 24 h and depended on the polymer used and composition of the tablets

Drug release was diffusion controlled and followed zero order kinetics. Non-Fickian diffusion was the drug release mechanism from all the tablets formulated. Pioglitazone release from the tablets containing beeswax and ethyl cellulose along with the matrix forming polymers was slow and spread over more than 24 h. The T_{90} values were in the range 19-24 h with these tablets. These tablets exhibited a floating time of 44 h after a floating lag time in the range 2-6 min. Olibanum is found suitable as matrix former for floating tablets and is comparable to HPMC K15M, a widely used polymer for floating tablets and for controlled release. Since olibanum gum is of natural origin it is non-toxic biocompatable and cheaper.

Key words: Floating tablets, Olibanum gum, HPMC K15 M, Pioglitazoneand Sustained Release.

INTRODUCTION

The oral route of drug administration is the most convenient and commonly used method of drug delivery. However, this route has certain problems such as unpredictable gastric emptying rate, short gastro intestinal transit time (8-12 h) and existence of an absorption window in the gastric and upper small intestine for several drugs1,2 leading to low and variable oral absorption over shorter period of time. The real issue in the development of oral sustained release drug delivery systems is to prolong the residence time of the dosage form in the stomach or upper gastro intestinal tract until the drug is completely released and absorbed. Several approaches are currently used to retain the dosage form in the stomach. These include bioadhesive systems3, swelling and expanding systems4, 5, floating and other delayed gastric emptying devices^{8, 9}. The principle of floating tablets offers a simple and practical approach to achieve increased gastric residence time to enhance the bioavailability and to obtain sustained release. Floating tablets are designed based on gas generating principle. Design of floating tablets needs a strong matrix forming polymer. Several polymers such as various viscosity grades of HPMC, Carbopol 934P, Eudragit RL, calcium alginate, chitosan, xanthan gum, guargum, ethyl cellulose etc., have been used10 in the design of floating tablets of various APIs.

Pioglitazone is an effective oral anti - diabetic agent that belongs to the thiazolidonediones drug class and is widely prescribed in the management of non-insulin dependent (Type II) diabetes mellitus. It is poorly soluble in aqueous fluids and is majorly absorbed from stomach¹¹. Dosage forms that are retained in the stomach would increase its oral bioavailability and efficacy. Pioglitazone has a short biological half-life of 3-6 hours and is eliminated rapidly¹². Therefore sustained release floating tablet formulations are needed for pioglitazone to prolong its duration of action and to increase its oral bioavailability and to improve patient compliance. In the present study olibanum gum, a natural gum-resin was evaluated as matrix former in the design of floating tablets of pioglitazone. Floating tablets of pioglitazone were designed employing olibanum gum and hydroxyl propyl methyl cellulose, HPMC K15 M (for comparison) as matrix formers, sodium bicarbonate as gas generating agent, bees wax and ethyl cellulose as floating enhancers and the tablets were evaluated for floating and drug release characteristics.

MATERIALS AND METHODS

Materials

Pioglitazone was a gift sample from M/s. Micro Labs, Ltd., Pondicherry, HPMC K15M was a gift sample from M/s NatcoPharma Pvt. Ltd., Hyderabad, Olibanum gum (Procured from Girijan Cooperative Corporation, Govt. of AP, Visakhapatnam.), Lactose (Qualigens), Sodium Bicarbonate (Loba Chemie), Talc I.P. (Loba Chemie), Magnesium stearate I.P. (LobaChemie) were procured from commercial sources.

Preparation of floating tablets

Matrix tablets each containing 30 mg of pioglitazone were formulated employing (i) olibanum gum and (ii) HPMC K15M each at 50 % concentration in the formula. Sodium bicarbonate was used as gas generating agent at 15 % and 20 % strength in each case. Bees wax and ethyl cellulose were used as floating enhancers at 15 % and 5% concentration respectively in some of the formulations.

The required quantities of pioglitazone, olibanum gum (sieve # 120), HPMC K15 M, bees wax, lactose were thoroughly mixed in a mortar by following geometric dilution technique. The granulating fluid (a mixture of water and alcohol in 1:1 ratio) was added and mixed thoroughly to form adough mass. The mass was passed through mesh No.12 to obtain wet granules. The wet granules were dried at 60°C for 2 h. The dried granules were passed through mesh No. 16 to break the aggregates. The lubricants talc (2 %) and magnesium stearate (2 %) were passed through mesh No. 60 on to the dry granules and blended in a closed polythene bag. The tablet granules were compressed into tablets on a 16 station rotary multistation tablet punching machine (M/s Cadmach Machinery Co. Pvt. Ltd., Mumbai) to a hardness of 8-10 kg/sq.cm using 9 mm round and flat punches.

Evaluation of tablets

Hardness of the tablets was tested using Monsanto hardness tester. Friability of the tablets was determined in a Roche friabilator. Disintegration time of the tablets was determined using a Thermonic tablet disintegration test machine using water, 0.1 N HCl and phosphate buffer of pH 7.4 as the test fluids.

Estimation of pioglitazone

An ultraviolet (UV) spectrophotometric method based on the measurement of absorbance at 269 nm in 0.1Nhydrochloric acid was used for the estimation of pioglitazone. The method obeyed Beer-Lambert's law in the concentration range of 1-10 $\mu m/m l$. When a standard drug solution was assayed repeatedly (n = 6) the relative error (accuracy) and coefficient of variation (precision) were found to be 0.80 and 1.10 %, respectively. No interference from the excipients used was observed.

Floating lag time and floating time

In vitro buoyancy was determined by measuring floating lag time and duration of floating. The tablets were placed in a 250 ml glass beaker containing 0.1 N HCl. The time required for the tablet to rise to the surface and float was determined as floating lag time. The duration during which the tablet remains floating was determined as floating time.

Drug release study

Drug release from the matrix tablets was studied using 8-station dissolution rate test apparatus (Lab India, Disso 2000) employing a paddle stirrer at 50 rpm and at temperature 37 \pm 0.5 $^{0}\text{C}.$ Hydrochloric acid, 0.1 N (900 ml) was used as dissolution fluid. A 5 ml sample of dissolution fluid was withdrawn at different time intervals through a filter (0.45 μm) over a period of 24 h. Each sample withdrawn was replaced with an equal amount of fresh dissolution medium. The samples withdrawn were assayed spectrophotometrically by measuring the absorbance at 269 nm. All drug release experiments were conducted in triplicate.

Data analysis

Drug release data were analyzed as per zero order, first order, Higuchi¹³ and Peppas equation¹⁴ models to assess drug release kinetics and mechanism from the tablets.

RESULTS AND DISCUSSION

Floating tablets of pioglitazone were formulated employing (i) Olibanum and (ii) HPMC K15M as rate controlling matrix formers and sodium bicarbonate (15 %) as gas generating agent with an objective of developing floating tablets of pioglitazone and to make a comparative evaluation of the two matrix formers for floating tablets. The matrix formers were used at strength of 50 % in the matrix tablets. Olibanum is a gum resin obtained from BoswelliaserrataRoxburg and other species of boswellia. Olibanum consist¹⁵ of mainly an acid resin (50-60 %), gum (30-36 %) and volatile oil (3-8 %), the resin contain¹⁶ mainly a resin acid (boswellic acid) and a resin (olibanoresene) in equal proportion. The olibanum gum and the resin extracted from olibanum exhibited17 excellent release retarding properties in matrix tablets for controlled release. Floating tablets of pioglitazone were designed in the present study to enhance its oral bioavailability and to achieve sustained release over 24 h for once-a-day administration.

The matrix tablets were prepared by wet granulation method employing water - alcohol (1:1) as granulating fluid as per the

formulae given in Table 1. A total of 12 floating tablet formulations of pioglitazone were prepared employing sodium bicarbonate as gas generating agent at 15 % and 20 % strength in the tablets; beeswax (15 %) and ethyl cellulose (5 %) as floating enhancers. All the matrix tablets prepared were evaluated for hardness, friability, floating characteristics, disintegration and drug release characteristics.

Drug content, hardness, friability and disintegration time and floating characteristics of various tablet formulations are given in Table 2. Hardness of the matrix tablets was in the range 7.0-8.5 kg/sq.cm. Weight loss in the friability test was less than 0.3 % in all the cases. All the tablets prepared contained pioglitazone within 100 \pm 5 % of the labeled claim. All the matrix tablets prepared were found to be non-disintegrating in water and aqueous fluids of acidic pH (1.2) and alkaline pH (7.4). As such all the matrix tablets prepared employing olibanum gum and HPMC K15M was of good quality with regard to drug content, hardness and friability. Floating characteristics of various matrix tablets formulated are given in Table 3.

Tablets formulated with sodium bicarbonate (15 %) alone exhibited floating time in the range 5-8.5 h with both the two polymers. Floating lag time was relatively longer, 21.6 ± 2.88 min with olibanum and HPMC K15 M tablets exhibited a short floating lag time in the range 4-6 min. The floating characteristics of the formulations F1 and F2 which contain sodium bicarbonate (15 %) were not satisfactory with both the two polymers and need to be improved. Beeswax and ethyl cellulose, which are lipophilic materials having density less than one, are tried to decrease the hydrophilic property of the formulation to increase the buoyancy. Beeswax (15%) was incorporated in formulations F3 and F4 retaining sodium bicarbonate (15 %) in these formulations. Floating time was in the range 23-42 h and floating lag time was in the range 2-11 min. HPMC K15 M exhibited better floating characteristics than the olibanum. Formulations F5 and F6 contain ethyl cellulose (5%) in addition to beeswax (15%). These formulations exhibited excellent floating characteristics. Floating time was in the range 44-48 h and floating lag time was 1-3 min with HPMC and 5-6 min with olibanum. Thus the floating characteristics of matrix tablets formulated with olibanum (F5) are comparable with those of tablets formulated with HPMC K15M (F6) when floating enhancers (beeswax and ethyl cellulose) are included in the tablet formulations. The sodium bicarbonate strength in the matrix tablets was increased to 20% in formulations F7 to F12 to evaluate the effect of strength of sodium bicarbonate on the floating and drug release characteristics of the floating tablets formulated employing olibanum and HPMC K15 M. In the case of formulations which contained olibanum and HPMC as matrix formers and sodium bicarbonate (20 %), beeswax (15 %) and ethyl cellulose (5 %), the floating time was increased to 46-48 h with a floating lag time in the Overall, increasing the strength of sodium range 2-5 min. bicarbonate from 15 % to 20% has not much improved the floating characteristics. Addition of beeswax (15 %) and ethyl cellulose (5 %) has significantly enhanced the buoyancy of the tablets formulated with both the two polymers.

Table 1: Composition of floating tablets formulated employing olibanum gum HPMC

	_		_						_			
Ingredient (mg/tablet)	Formulation											
	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F12
Pioglitazone	30	30	30	30	30	30	30	30	30	30	30	30
Lactose	47.5	47.5	20	20	5	5	35	35	8	8		
Olibanum	125		150		150		125		160		200	
HPMC		125		150		150		125		160		200
Sod.bicarb	37.5	37.5	45	45	45	45	50	50	64	64	80	80
Bees wax			45	45	45	45			48	48	60	60
Ethylcellulose					15	15					20	20
Mg.st.	5	5	5	5	5	5	5	5	5	5	5	5
Talc	5	5	5	5	5	5	5	5	5	5	5	5
Weight of the tablet	250	250	300	300	300	300	250	250	320	320	400	400

*HPMC: Hydroxy propyl methyl cellulose, Sod. bicarb: Sodium bicarbonate, Mg. St.:Magnesium stearate

		_	,		
Formulation	Pioglitazone content (mg/tablet)	Hardness (kg/cm²)	Friability(% weight loss)	Floating lag time (min)	Floating time (h)
F1	28.8	8.0	0.30	21.6±2.88	6.6±0.571
F2	28.5	8.5	0.30	5.0±1.0	8.3±1.53
F3	28.8	8.5	0.25	10.6±1.15	23.3±1.15
F4	30.0	7.5	0.20	2.6±1.15	41.3±2.30
F5	28.8	8.5	0.26	5.3±0.57	44.0±3.46
F6	28.8	7.0	0.25	2.0±1.0	47.3±1.15
F7	28.8	8.5	0.25	*	*
F8	30.3	8.0	0.30	7.6±0.57	10.0±0.0
F9	29.4	8.5	0.15	5.3±0.57	28.6±1.15
F10	29.4	8.0	0.05	2.3±1.15	46.3±1.52
F11	28.8	8.0	0.20	5.3±0.57	45.6±0.57
F12	29.4	7.0	0.12	2.3±1.52	46.0±2.0

Table 2: Physical properties of floating tablets formulated employingolibanum gum and HPMC

*Tablets disintegrated

Table 3: Release characteristics of floating tablets formulated employingolibanum gum and HPMC

Formulation	T ₅₀ (h)	T ₉₀ (h)	K ₁ (hr ⁻¹)	'n' in Peppas equation
F1	1.8	5.6	0.526	0.641
F2	4.7	9.4	0.320	0.674
F3	4.5	11.8	0.286	0.521
F4	5.4	14.9	0.275	0.529
F5	7.3	19.2	0.195	0.628
F6	11.0	20.6	0.199	0.955
F7	2.1	4.7	0.418	0.639
F8	4.0	8.6	0.270	0.650
F9	4.5	10.1	0.240	0.576
F10	4.9	14.3	0.268	0.529
F11	7.3	19.3	0.192	0.595
F12	11.5	24.0	0.099	0.885

Pioglitazone release from the floating tablets was studied in 0.1N hydrochloric acid. Pioglitazone release from all the floating tablets prepared was slow and spread over 24 h and depended on the polymer used and composition of the tablets. Release data were analyzed by zero order, first order, Higuchi¹³ and Peppas equation¹⁴ models. When the release data were analyzed as per zero and first order models, the 'r' values were relatively higher in zero order model with all the floating tablets formulated indicating that the drug release from all these tablets followed zero order kinetics. Pioglitazone release data also obeyed Higuchi¹³ and Peppas equation¹⁴ models with 'r' values greater than 0.913. When percent release was plotted against $\sqrt{\text{time}}$, linear regressions with 'r' > 0.943 were observed with all the floating tablets prepared indicating that the drug release from all these tablets was diffusion controlled. When the release data were analyzed as per Peppas equation14, the release exponent 'n' was found in the range 0.521 to 0.955 indicating Non-Fickian (anamalous) diffusion as the release mechanism from all the floating tablets prepared with various polymers.

Comparison of release parameters of floating tablets prepared with the two polymers alone indicated that the drug release was relatively rapid with olibanum and slows with HPMC. T₉₀ (time for $90\ \%$ release) was 5.6 and 9.4 respectively with floating tablets prepared employing olibanum and HPMC alone. As such these tablets are considered not suitable for controlled release over 24 h. When the strength of sodium bicarbonate was increased from 15 %to 20 %, drug release rate was increased with both the two polymers. When beeswax (15 %) was included in the tablets the drug release rate was decreased when compared to the corresponding tablet formulations containing the matrix forming polymers alone. The T₉₀ values were in the range 10-14.9 h in the case of tablets prepared incorporating beeswax (15 %) along with the polymers. These tablets also failed to provide controlled drug release over 24 h. The release rate was much reduced when beeswax and ethyl cellulose were incorporated into the floating tablets as floating enhancers. Pioglitazone release from the tablets containing beeswax and ethyl cellulose along with the matrix forming polymers was slow and spread over more than 24 h.

The T_{90} values were in the range 19–24 h with these tablets. These tablets also exhibited good floating characteristics apart from controlled release over 24h. The order of release retarding efficiency of the polymers was olibanum> HPMC.

CONCLUSION

Olibanum is suitable as matrix former for floating tablets and is comparable to HPMC K15M, a widely used polymer for floating tablets and for controlled release. Floating tablets formulated employing olibanum and HPMC K15 M as matrix formers and sodium bicarbonate as gas generating agent, beeswax and ethyl cellulose as floating enhancers exhibited a floating time of more than 44 hours after a floating lag time in the range 2 - 6 min. Pioglitazone release from the floating tablets prepared was slow and spread over 24 h and depended on the polymer used and composition of the tablets. Drug release was diffusion controlled and followed zero order kinetics. Non-Fickian diffusion was the drug release mechanism from all the tablets formulated. Olibanum is found suitable as matrix former for floating tablets and is comparable to HPMC K15M, a widely used polymer for floating tablets and for controlled release. Since olibanum gum is of natural origin it is non-toxic biocompatable and cheaper.

REFERENCES

- Agyilirah GA, Green M, Ducret R. Evaluation of the gastric retention properties of cross linked polumer coated tablet versus those of a non-disintegratingtablelets. Int J Pharm. 1991; 75: 241-247.
- Hoffman AF, Pressman JH, Code CF, Witzterm KF. Controlled entry of orally-administered drugs; physiological considerations. Drug DevInd Pharm. 1983; 9: 1077.
- Santus G, Lazzarini G, BottoniG. An in vitro- in vivo investigation of oral bioadhesive controlled release Furosemide formulations. Eur J Pharm Biopharm.1997; 44:39-52.
- 4. Deshpande AA, Rhodes CT, Shah NH, Malick AW. Controlled release drug delivery system for prolonged gastric residence; an overview. Drug DevInd Pharm. 1996; 22: 531-539.

- Deshpande AA, Shah NH, Rhodes CT, Malick W. Development of a novel controlled release system for gastric retention. Pharm. Res. 1997; 14: 815-819.
- Menon A, Ritshel WA, Sakr A. Development and evaluation of monolithic floating dosage form for Furosemide. J Pharm Sci.1994; 83: 239-245.
- Whitehead L, Fell JT, Collett JH, Sharma HL, Smith AM. Floating dosage forms: an *in vivo* study demonstrating prolonged gastric retention. J Control Release. 1998; 55: 3-12.
- 8. Singh B, Kim K, Floating drug delivery system: an approach to oral controlled drug delivery via gastic retention. J Control Release. 2000; 63: 235-259.
- Chawla G, Bansal A. A means to address regional variability in intestinal drug absorption. Pharm Tech. 2003; 27: 50-68.
- SwetaArora, Javed Ali, AlkaAhuja, Roop K Khar, SanjulaBaboota, Floating drug delivery system: A review. AAPS Pharm Sci Tech. 2005; 6 (3): E 372-E 390.

- 11. Sweetman CS. Martindale; the Complete Drug Reference, London, Pharmaceutical Press, 2002; 333.
- 12. Jayvadan K Patel, Rakesh P Patel, Avani F Amin, Madhabhai M Patel, Formulation and evaluation of mucoadhesiveGlipizide microspheres. AAPS Pharm Sci Tech. 2005; 6 (1): Article 10, E49-E55.
- 13. Higuchi T. Mechanism of sustained action medication: theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Phar Sci. 1963; 52: 1145-1149.
- Ritger P, Peppas NA. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Control Release. 1987; 5: 37-42.
- 15. Nigam SK, Mitra CR. Indian Drugs. 1979; 16: 80.
- 16. Srinivas RS, Madhu B. Ind J Chem. 1976; 176.
- 17. Chowdary KPR, Mahapatra P, MuraliKrishna MN. Evaluation of olibanum resin as microencapsulating agent for controlled drug delivery. Indian J Pharm Sci. 2006; 68: 497.