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ABSTRACT 

Drug action involves the successful administration of the drug to the patient, the transport of the drug molecules to the vicinity of the target and the 
maintenance of the drug as an active species for a sufficient period of time to allow an effect to take place. The drug molecules must interact with the 
target receptor in defined ways and with sufficient affinity to perturb the dynamics of a series of molecular events and pathways, without residing 
within cells and organs for long enough to cause non-specific effects. All of these stages are influenced by different combinations of the chemical and 
physical features of a drug, which defines its Absorption, Distribution, Metabolism and Excretion (ADME) properties. The term 'drugability' 
describes a drug's performance with respect to cellular uptake, distribution, metabolism and retention. The Lipinski 'rule of five' is an empirical 
guide to the optimization of drug-like properties, especially oral absorption and distribution features, centered on the knowledge base of known 
drugs, over all therapeutic categories. The ability to reliably predict drug-like properties together with ADME/T information, which is all too often 
unavailable for many classes of anti-cancer drugs. So present study has been carried out to predict   ADME/T properties and Lipinski Rule of Five of 
150 anti- cancer drugs approved by FDA (Food and Drug Administration). We found that not all the 150 compounds obeyed Lipinski’s Rule of Five 
and ADME/T properties as per Accord Excel. In future, we will trace out the above mentioned properties of all the other existing anticancer drugs. 
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INTRODUCTION   

The escalating cost of drug discovery has become a major concern in 
the recent years. 

Discovering and bringing a new drug to the market has been 
estimated to cost in excess of US $ 800 million1. In the past, in a 
typical drug discovery setting, once an array of quality leads were 
generated, a series of tests were applied to evaluate the 
pharmacokinetic properties (Absorption, Distribution, Metabolism 
and Excretion) and Toxicity (together called as ADME/T). Failure of 
promising lead (s) to exhibit desirable ADME/T profile is now 
regarded as the major reason of late-stage attrition. According to a 
recent report, poor pharmacokinetics (39%) and preclinical toxicity 
(11%) were the major reasons for failures in the drug development, 
in addition to lack of efficacy, adverse effects in man and commercial 
reasons2. This scenario has changed in the current decade with more 
efforts focused on the early-stage ADME/T profiling. The process is 
streamlined with the introduction of medium-to-high throughput in 
vitro ADME/T assays to keep pace with the high numbers associated 
with combinatorial libraries and the high throughput screening. In 
addition to the experimental evaluation of ADME/T, in silico 
predictions of these properties have gained popularity in the 
industry in recent years for the obvious reasons. Various 
Quantitative Structure-Activity and Structure-Property Relationship 
(QSAR and QSPR) and related approaches have successfully made 
their way in the form of software in the field of predictive ADME/T. 
The sole purpose of all these recently evolved experimental and 
predictive ADME/T approaches is to reduce late-stage failures by 
focusing on the most promising lead(s) with desired ADME/T 
properties. Newer approaches and methods to predict ADME/T 
profile are continuously introduced to the drug discovery 
community3. The ability to reliably predict drug-like properties 
involves the incorporation of data from classic Quantitative 
Structure-Activity Relationships together with experimental ADME 
information1, which is all too often unavailable for many classes of 
anticancer drugs. Anticancer drugs have traditionally been outliers 
from the Lipinski rule, many having a higher molecular weight than 
is common in other therapeutic areas.  

The Lipinski ‘rule of five’ 

A potential drug molecule will have poor absorption and distribution 
properties if the following criteria are met. 

• Its molecular weight is over 500 Da 
• The calculated log P is over 5. 

 
 
• There are over 5 hydrogen-bond donors. 
• There are over 10 hydrogen-bond acceptors. 

This constitutes Lipinski Rule of Five. In this present study, we have 
taken 150 anti-cancer compounds approved by FDA, calculated its 
Lipinski’s rule of five and ADME/T properties. 

MATERIALS AND METHODS 

In the current work, 150 anti-cancer compounds downloaded from 
Pubchem database and calculated its ADME/T properties and 
Lipinski’s Rule of Five by using Accord Excel 6.1 version. But Accord 
Excel did not provide exact molecular weight and LogP value. If 
molecular weight less than 500, it gave the result as False, otherwise 
True. If logP value is less than 5, the result will be False otherwise 
True. So in order to overcome this difficulty we used Discovery 
studio 2.1 version, with the help of which we calculated the value of 
molecular weight and LogP. Accelrys Discovery Studio (2.1) is a life 
science modeling and simulation suite of application focused on 
optimizing the drug discovery process. It makes easier to examine 
the properties of large and small molecules. Accord for Excel allows 
scientists to display chemical structures and reactions, perform 
chemical calculations, analyze R-groups, and query by substructure 
or similarity directly within Excel.  

RESULTS 

Table 1 describes ADME/T properties of 150 anticancer compounds. 
Lipinski Rule of Five of those compounds were calculated and 
tabulated in Table 2. Both these calculations done through Accord 
Excel. But Accord Excel doesn’t offer the exact value of molecular 
weight and log p. So we used Discovery studio 2.1 version and the 
results were shown inTable 3.  

DISCUSSION 

The transformation of a lead molecule into a drug is a key step in the 
process of drug discovery, requiring the application of knowledge of 
the compound’s absorption, distribution, metabolism and excretion 
(ADME) profile1 to optimize its ‘drugability’. Most compounds that 
fail to reach the clinic, even though they might be high-affinity in 
vitro inhibitors of the desired target, often do so because of 
insufficient attention to these issues. Therefore, there is now 
widespread agreement2 that drug-like and ADME properties should 
be incorporated as early as possible in the discovery cycle, rather 
than, after the optimization of molecular recognition features.  
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Table.1.ADME/T properties of 150 anti-cancer compounds 

S.I.No Compounds Fpsa Aq.Sol.Lev Bbb.Lev Cyp206 Heptatox Hia. Lev Prtn.Bind.Lev 
1 Pirenzepine 68.7303  3 3 1 0  0 1 
2 Dicyclomine 29.5812 2 0 1 0 0 2 
3 Oxybutynin  50  2 1  1  0  0 1 
4 Cevimeline 12.2826 3 2 0 0 0 0 
5 Aceclidine 29.58 4 2 0 0 0 0 
6 Imidafenacin 60.45 3 2 1 0 2 2 
7 Piperidolate 29.58 2 1 1 0 1 1 
8 Scopolamine 59.329 3 3 0 0 0 0 
9 Atropine 50.39 3 2 0 0 0 0 
10 Tolterodine 24.16 2 0 1 0 0 2 
11 Solifenacin 32.93 2 1 1 0 2 2 
12 Xanomeline 34.80 2 1 1 0 0 0 
13 Darifenacin 56.12 2 1 1 0 2 2 
14 Teimoniumiodide 29.74 4 2 1 0 1 1 
15 Alvameline Malate 42.48 4 3 0 0 2 0 
16 Methantheline Bromide 35.16 3 1 1 0 2 2 
17 Esoxybutynin Chloride 50.39 2 1 1 0 0 1 
18 Talsaclidine Fumarate 12.28 3 1 0 0 0 0 
19 Oxyphencylimine 61.72 3 2 0 0 0 0 
20 Trimebutine 56.37 2 1 0 0 0 2 
21 Cimetropium Bromide 55.97 4 3 0 0 2 2 
22 Dexetimide 50.76 2 1 1 0 0 1 
23 Pirenzepine Hydrochloride 68.73 3 3 1 0 0 0 
24 Propantheline 35.16 2 1 1 0 0 2 
25 Thiaton 0 2 0 1 0 0 0 
26 Methylephdrine 24.16 4 1 0 0 0 0 
27 Aptazapine 12.05 2 1 1 0 0 2 
28 Atipamezole 26.31 3 1 0 0 0 2 
29 Methylatropine 47.64 4 3 0 0 0 0 
30 Nozinan Hydrochloride 15.63 2 0 1 0 0 2 
31 Methylergonovine 69.33 3 3 1 0 0 1 
32 Hexocyclium 24.16 3 1 1 1 0 0 
33 Dipivefrin 86.08 2 2 0 0 0 2 
34 Moxisylyte 38.51 3 1 0 0 0 2 

35 Naphazoline 24.13 3 1 0 0 0 1 

36 Methocholine Chloride 26.23 5 4 0 0 2 0 

37 Fluotropium Chloride 47.03 3 2 1 0 0 2 

38 Sunitinib 78.62 2 2 1 0 0 1 

39 Midostaurin 46.59 2 1 1 1 0 2 

40 Vatalamib 33.65 3 1 0 0 0 1 

41 Metasanib Diphosphate 43.23 2 1 1 0 0 1 

42 Semaxinib 34.51 2 1 0 0 0 1 

43 Pazopanib 73.42 2 2 1 0 0 2 

44 Eucatropine Hydrochloride 24.70 3 1 1 1 0 2 

45 Alafuzosin 69.33 2 2 1 0 0 1 

46 Metraminol 38.51 3 1 0 0 0 2 

47 Glyceryl Phosphochloride 47.64 4 3 0 0 0 0 

48 Glycopyrate 69.33 3 3 0 0 0 1 

49 Sorafenib 35.16 2 1 1 0 0 2 

50 Indromin 31.56 2 1 1 0 0 2 

51 Dasatinib 29.43 2 1 1 0 0 1 

52 Acythylcholine Chloride 26.231 5 4 0 0 2 0 
53 Adatanserin hydrochloride 59.338 3 2 0 1 0 0 
54 Benzatropine 12.283 2 0 1 0 0 2 
55 Benzitimide Hydrochloride 50.764 2 1 1 0 0 2 
56 Benztropine Mesilate 12.283 2 0 1 0 0 2 
57 Bethanechol Chloride 52.771 5 4 0 0 1 0 
58 Biperiden Hydrochloride 24.168 2 1 1 0 0 0 
59 Biperiden Lactate 24.168 2 1 1 0 0 1 
60 Butropium Bromide 55.977 3 2 0 0 0 1 
61 Carbachol 52.771 5 4 0 0 1 0 
62 Carpronium Chloride 26.231 5 4 0 0 2 0 
63 Chlorpromazine Hydrochloride 13.41 1 4 0 1 3 2 
64 Choline Alfoscerate 94.093 5 4 0 0 3 0 
65 Chlorpromazine   13.41 1 4 0 1 3 2 
66 Cyclopentolate Hydrochloride 50.399 3 2 0 0 0 0 
67 Darifenacin Hydrobromide 56.123 2 1 1 0 0 2 
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68 Alosetron hydrochloride 52.317 3 2 0 1 0 0 
69 Esoxybutynin Chloride 50.399 2 1 1 0 0 1 
70 Ethybentropine 12.283 2 0 1 0 0 2 
71 Etileferine 54.441 4 3 0 0 0 1 
72 Etomidoline 45.746 2 1 1 1 0 2 
73 Alosetron 52.317 3 2 1 0 0 2 
74 Flutropium Bromide 47.046 3 2 1 0 0 1 
75 Homatropine Hydrobromide 50.399 3 2 0 0 0 0 
76 Homatropine Methylbromide 47.046 4 3 0 0 0 0 
77 Hyoscine Methyobromide 55.977 4 3 0 0 0 0 
78 Azasetron hydrochloride 63.046 3 3 0 0 0 0 
79 Mazaticol Hydrochloride Hydrate 50.399 2 1 0 0 0 0 
80 Mazaticol   50.399 2 1 0 0 0 0 
81 Methixene Hydrochloride 3.3525 1 0 1 0 1 2 
82 Orphenadrine Hydrochloride 12.283 2 0 1 0 0 1 
83 Orphenadrine Citrate  12.283 2 0 1 0 0 1 
84 Oxitropium Bromide  55.977 4 3 0 0 0 0 
85 Pilocarpine Borate 42.84 4 3 0 0 0 0 
86 Pilocarpine Nitrate 42.84 4 3 0 0 0 0 
87 Pimethixene  3.3525 1 0 1 0 0 1 
88 Pipethanate 50.399 2 1 1 0 0 2 
89 Piroheptine 3.3525 1 0 1 0 1 2 
90 Procyclidine Hydrochloride 24.168 2 1 1 0 0 0 
91 Procyclidine   24.168 2 1 1 0 0 0 
92 Profenamine Hydrochloride 6.705 2 0 1 0 1 2 
93 Profenamine   6.705 2 0 1 0 1 2 
94 Propiverine 38.514 2 1 1 0 0 1 
95 Sertindole 42.164 1 1 1 0 0 1 
96 Tamsulosin 100.74 2 3 0 0 0 1 
97 Trihexyphenidyl Chloride 24.168 2 0 1 0 0 1 
98 Trihexyphenidyl   24.168 2 0 1 0 0 1 
99 Tropicamide 52.73 4 3 1 0 0 2 
100 Tropsium Chloride 47.046 3 2 1 0 0 2 
101 Amosulalol 112.62 3 4 0 1 0 0 

102 Arotinolol  88.727 2 3 0 0 0 0 

103 Asenapine  maleate 12.286 2 0 1 1 0 2 

104 Bunazosin     hydrochloride  90.928 2 3 1 0 0 0 

105 Bunazosin  90.928 2 3 1 0 0 0 

106 Carvedilo l phosphate hydrate 75.471 2 2 1 0 0 1 

107 Carvedilol  75.471 2 2 1 0 0 1 

108 Dapiprazole  hydrochloride 34.572 2 1 0 0 0 1 

109 Dipivefrin  hydrochloride 86.08 2 2 0 0 0 1 

110 Batanopride hydrochloride 86.234 3 3 1 0 0 1 

111 Ergometrine  69.33 3 3 1 0 0 1 

112 Ergonovine  maleate 69.33 3 3 1 0 0 1 

113 Guanadrel  sulfate 82.263 4 3 0 0 0 0 

114 Ifenprodil  tartrate 44.983 2 1 0 0 0 1 

115 Labetalol  hydrochloride 98.281 3 3 0 1 0 2 

116 Labetalol  98.281 3 3 0 1 0 2 

117 Levomepromazine   hydrochloride 15.63 2 0 1 0 0 2 

118 Levomepromazine  maleate 15.63 2 0 1 0 0 2 

119 Levomepromazine  15.63 2 0 1 0 0 2 

120 Medroxalol  116.142 3 4 0 1 0 2 

121 Cilansetron hydrochloride  39.258 2 1 0 1 0 2 

122 Methylergometrine  69.33 3 3 1 0 0 1 

123 Methylergonovine  maleate 69.33 3 3 1 0 0 1 

124 Mianserin  hydrochloride 6.705 2 0 1 0 0 2 

125 Mianserin  6.705 2 0 1 0 0 2 

126 Moxisylyte  hydrochloride 38.513 3 1 0 0 0 2 

127 Cilansetron  39.258 2 1 0 1 0 2 

128 Naphazoline  hydrochloride 24.133 3 1 0 0 0 1 

129 Naphazoline  nitrate 24.133 3 1 0 0 0 1 

130 Cinanserin hydrochloride 33.463 2 1 1 1 0 0 

131 Oxymetazoline  hydrochloride 44.949 3 1 0 0 0 1 

132 Oxymetazoline  44.949 3 1 0 0 0 1 

133 Phenoxybenzamine  hydrochloride 12.286 2 0 1 0 0 2 
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134 Phenoxybenzamine  12.286 2 0 1 0 0 2 

135 Pimozide  36.816 1 1 1 0 0 2 

136 Pseudoephedrine  hydrochloride 33.625 4 2 0 0 0 0 

137 Pseudophedrine  sulfate 33.625 4 2 0 0 0 0 

138 Pseudophedrine  33.625 4 2 0 0 0 0 

139 Quetiapine  fumarate 47.773 3 2 1 0 0 1 

140 Silodosin  98.679 3 3 0 1 0 1 

141 Terazosin  hydrochloride hydrate 98.858 3 3 0 0 0 0 

142 Terazosin  98.858 3 3 0 0 0 0 

143 Tetrahydrozoline  hydrochloride 24.133 3 1 0 0 0 0 

144 Tetrahydrozoline nitrate 24.133499 3 1 0 0 0 0 

145 Tetryzoline  24.133 3 1 0 0 0 0 

146 Tolazoline  hydrochloride 24.133 4 2 0 0 0 2 
147 Tramazoline  36.943 3 1 0 0 0 0 

148 Bunitrolol hydrochloride 52.68 4 3 0 0 0 0 

149 Tolazoline 24.133 4 2 0 0 0 2 
150 Tramazoline hydrochloride 36.943 3 1 0 0 0 0 

Table.2.Lipinski Rule of five of 150 anti-cancer compounds 

S.i. Compound Hydrogen bond 
acceptor  

Hydrogen bond  
Donor 

Molecular 
weight 

A logp 

1 Pirenzepine 7 1 False False 
2 Dicyclomine 3 0 False False 
3 Oxybutynin 4 1 False False 
4 Cevimeline 2 0 False False 
5 Aceclidine 3 0 False False 
6 Imidafenacin 4 2 False False 
7 Piperidolate 3 0 False False 
8 Scopolamine 5 1 False False 
9 Atropine 2 1 False  False 
10 Tolterodine 2 1 False  False 
11 Solifenacin 4 0 False  False 
12 Xanomeline 4 0 False  False 
13 Darifenacin 4 2 False  False 
14 Teimoniumiodide 3 1 False  False 

15 Alvameline Malate 9 2 False False 
16 Methantheline Bromide 4 0 False False 
17 Esoxybutynin Chloride 4 1 False False 
18 Talsaclidine Fumarate 6 2 False False 
19 Oxyphencylimine 5 1 False False 
20 Trimebutine 6 0 False False 
21 Cimetropium Bromide 5 1 False False 
22 Dexetimide 4 1 False False 
23 Pirenzepine Hydrochloride 8 3 False False 
24 Propantheline 4 0 False False 
25 Thiaton 1 0 False False 
26 Methylephdrine 2 1 False False 
27 Aptazapine 7 2 False False 
28 Atipamezole 2 1 False False 
29 Methylatropine 8 1 False False 
30 Nozinan Hydrochloride 3 0 False False 
31 Methylergonovine 9 5 False False 
32 Hexocyclium 7 1 False False 
33 Dipivefrin 6 2 False False 
34 Moxisylyte 4 0 False False 
35 Naphazoline 2 1 False False 
36 Methocholine Chloride 3 0 False False 
37 Fluotropium Chloride 4 1 False False 
38 Sunitinib 6 3 False False 
39 Midostaurin 4 1 False False 
40 Vatalamib 3 1 False False 
41 Metasanib Diphosphate 2 1 False False 
42 Semaxinib 4 0 False False 
43 Pazopanib 3 1 False False 
44 Eucatropine Hydrochloride 2 1 False False 
45 Alafuzosin 3 0 False False 
46 Metraminol 6 1 False False 
47 Glyceryl Phosphochloride 4 2 False False 
48 Glycopyrate 3 2 False False 
49 Sorafenib 2 1 False False 
50 Indromin 3 0 False False 
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51 Cisapride 8 5 False False 
52 Acythylcholine Chloride 3 0 False False 
53 Adatanserin hydrochloride 6 1 False False 
54 Benzatropine 2 0 False False 
55 Benzitimide Hydrochloride 4 1 False False 
56 Benztropine Mesilate 5 1 False False 
57 Bethanechol Chloride 4 2 False False 
58 Biperiden Hydrochloride 2 1 False True 
59 Biperiden Lactate 5 3 False False 
60 Butropium Bromide 5 1 True False 
61 Carbachol 4 2 False False 
62 Carpronium Chloride 3 0 False False 
63 Chlorpromazine Hydrochloride 7 2 False False 
64 Choline Alfoscerate 4 0 True True 
65 Chlorpromazine   4 1 False False 
66 Cyclopentolate Hydrochloride 4 2 True True 
67 Darifenacin Hydrobromide 4 1 False False 
68 Alosetron hydrochloride 5 1 False False 
69 Esoxybutynin Chloride 2 0 False False 
70 Ethybentropine 7 2 False False 
71 Etileferine 3 3 False False 
72 Etomidoline 5 1 False False 
73 Alosetron 5 1 False False 
74 Flutropium Bromide 5 3 False False 
75 Homatropine Hydrobromide 4 1 False False 
76 Homatropine Methylbromide 4 1 False False 
77 Hyoscine Methyobromide 5 1 False False 
78 Azasetron hydrochloride 6 1 False False 
79 Mazaticol Hydrochloride Hydrate 5 3 False False 
80 Mazaticol   4 1 False False 
81 Methixene Hydrochloride 2 2 False False 
82 Orphenadrine Hydrochloride 2 0 False False 
83 Orphenadrine Citrate  9 4 False False 
84 Oxitropium Bromide  5 1 False False 
85 Pilocarpine Borate 7 3 False False 
86 Pilocarpine Nitrate 8 1 False False 
87 Pimethixene  1 0 False False 
88 Pipethanate 4 1 False False 
89 Piroheptine 1 0 False True 
90 Procyclidine Hydrochloride 2 1 False False 
91 Procyclidine   2 1 False False 
92 Profenamine Hydrochloride 2 0 False True 
93 Profenamine   2 0 False True 
94 Propiverine 4 0 False False 
95 Sertindole 5 1 False False 
96 Tamsulosin 7 3 False False 
97 Trihexyphenidyl Chloride 2 1 False False 
98 Trihexyphenidyl   2 1 False False 
99 Tropicamide 4 1 False False 
100 Trospium Chloride 4 1 False False 
101 Amosulalol 7 4 False False 
102 Arotinolol  5 4 False False 
103 Asenapine  maleate 2 0 False False 
104 Bunazosin     hydrochloride  8 2 False False 
105 Bunazosin  8 2 False False 
106 Carvedilo l phosphate hydrate 4 2 False False 
107 Carvedilol  6 3 False False 
108 Dapiprazole  hydrochloride 6 3 False False 
109 Dipivefrin  hydrochloride 5 0 False False 
110 Batanopride hydrochloride 6 3 False False 
111 Ergometrine  6 2 False False 
112 Ergonovine  maleate 5 3 False False 
113 Guanadrel  sulfate 9 5 False False 
114 Ifenprodil  tartrate 14 10 True False 
115 Labetalol  hydrochloride 3 2 False False 
116 Labetalol  5 5 False False 
117 Levomepromazine   hydrochloride 5 5 False False 
118 Levomepromazine  maleate 3 0 False False 
119 Levomepromazine  3 0 False False 
120 Medroxalol  3 0 False False 
121 Cilansetron hydrochloride  5 2 False False 
122 Methylergometrine  2 1 False False 
123 Methylergonovine  maleate 5 3 False False 
124 Mianserin  hydrochloride 9 5 False False 
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125 Mianserin  2 0 False False 
126 Moxisylyte  hydrochloride 2 0 False False 
127 Cilansetron 4 0 False False 
128 Naphazoline  hydrochloride 4 0 False False 
129 Naphazoline  nitrate 2 1 False False 
130 Cinanserin hydrochloride 3 1 False False 
131 Oxymetazoline  hydrochloride 2 1 False False 
132 Oxymetazoline  3 2 False False 
133 Phenoxybenzamine  

hydrochloride 3 2 False False 
134 Phenoxybenzamine  2 0 False True 
135 Pimozide  2 0 False False 
136 Pseudoephedrine  hydrochloride 4 1 False True 
137 Pseudophedrine  sulfate 2 2 False False 
138 Pseudophedrine  4 4 False False 
139 Quetiapine  fumarate 2 2 False False 
140 Silodosin 5 1 False False 
141 Terazosin  hydrochloride hydrate 7 4 False False 
142 Terazosin  9 2 False False 
143 Tetrahydrozoline  hydrochloride 9 2 False False 
144 Tetrahydrozoline nitrate 2 1 False False 
145 Tetryzoline  2 1 False False 
146 Tolazoline  hydrochloride 2 1 False False 
147 Tramazoline  2 1 False False 
148 Bunitrolol hydrochloride 4 3 False False 
149 Tolazoline 1 1 False False 
150 Tramazoline hydrochloride 1 2 False False 

Table.3. Molecular weight and LogP value of 150 anti-cancer compounds 

S.I.No Compounds Mol.wgt LogP 
 1 Pirenzepine 351.412 1.04 
2 Dicyclomine 309.496 5.106 
3 Oxybutynin 357.497 4.646 
4 Cevimeline 438.366 0.289 
5 Aceclidine 169.226 0.557 
6 Imidafenacin 319.409 2.551 
7 Piperidolate 323.438 4.192 
8 Scopolamine 303.362 0.824 
9 Atropine 289.378 1.721 
10 Tolterodine 325.497 5.662 
11 Solifenacin 362.475 4.03 
12 Xanomeline 281.425 3.961                 
13 Darifenacin 426.562 4.558 
14 Teimonium iodide 445.368 0.954 
15 Alvameline Malate 309.33 0.912 
16 Methantheline Bromide 420.35 2.427 
17 Esoxybutynin Chloride 393.958  4.646 
18 Talsaclidine Fumarate 281.313 1.779 
19 Oxyphencylimine 344.458 2.627 
20 Trimebutine 387.481 4.116 
21 Cimetropium Bromide 438.366 0.289 
22 Dexetimide 362.475 3.559 
23 Pirenzepine Hydrochloride 405.889 1.04 
24 Propantheline 448.404 3.182 
25 Thiaton 410.444 3.384 
26 Methylephdrine 179.264 1.77 
27 Aptazapine 369.425 2.8 
28 Atipamezole 212.296 3.012 
29 Methylatropine 366.42 0.366 
30 Nozinan Hydrochloride 364.942 4.508 
31 Methylergonovine 339.441 2.063 
32 Hexocyclium 428.599  2.04 
33 Dipivefrin 351.448  3.485 
34 Moxisylyte 279.383 3.4 
35 Naphazoline 246.741 2.06 
36 Methocholine Chloride 195.692 -0.817 
37 Fluotropium Chloride 313.159 -2.513 
38 Sunitinib 398.484 2.998 
39 Midostaurin 570.637 4.7 
40 Vatalamib 346.821  4.705 
41 Metasanib Diphosphate 535.441 2.721 
42 Semaxinib 238.291 2.748 
43 Pazopanib 437.53 3.741 
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44 Eucatropine Hydrochloride 327.855 2.139 
45 Alafuzosin   
46 Metraminol 317.302 0.561 
47 Glyceryl Phosphochloride 257.229 -2.987 
48 Glycopyrate 398.344 1.457 
49 Sorafenib 464.834 4.176 
50 Indromin 347.463 3.347 
51 Cisapride 483.97 2.786 
52 Acythylcholine chloride 181.665 -1.195 
53 Adatanserin hydrochloride 405.975 2.44 
54 Benzatropine 307.438 3.875 
55 Benzitimide hydrochloride 398..936 3.559 
56 Benztropine mesilate 403.547 3.875 
57 Bethanechol chloride  196.68 -1.027 
58 Biperiden hydrochloride 347.931 3.649 
59 Biperiden lactate 401.551 3.649 
60 Butropium bromide 311.47 3.649 
61 Carbachol 182.653 -1.405 
62 Carpronium chloride 195.692 -0.758 
63 Chlorpromazine hydrochloride 636.736 8.568 
64 Chlorpromazine 636.736 8.568 
65 Choline alfoscerate 257.229 -2.987 
66 Cyclopentolate hydrochloride 327.855 2.489 
67 Darifenacin hydrobromide 291.394 2.489 
67 Darifenacin hydrobromide 507.474 4.558 
68 Alosetron hydrochloride 330.82 1.654 
69 Esoxybutynin chloride  393.958 4.646 
70 Ethybenztropine 321.465 4.224 
71 Etilefrine 181. 0.964 
72 Etomidoline 379.506 4.043 
73 Alosetron 294.359 1.654 
74 Flutropium bromide 496.421 2.289 
75 Homatropine hydrobromide 356.263 1.697 
76 Homatropine methylbromide 370.29 0.342 
77 Hyoscine methobromide 398.301 -0.531 
78 Azasetron hydrochloride 386.282 1.235 
79 Mazaticol hydrochloride hydrate 460.063 3.745 
80 Mazaticol 405.586 3.745 
81 Methexene hydrochloride 363.954 5.074 
82 Orphenadrine citrate 461.519 3.871 
83 Orphenadrine hydrochloride 305.85 3.871 
84 Oxitropium bromide 412.328 -0.182 
85 Pilocarpine borate 270.097 0.966 
86 Pilocarpine nitrate 271.278 0.966 
87 Pimethexene 293.434 4.495 
88 Pipethanate 339.438 3.67 
89 Piroheptine 303.449 5.212 
90 Procyclidine hydrochloride 323.909 3.961 
91 Procyclidine 287.448 3.961 
92 Profenamine hydrochloride 348.942 5.088 
93 Profenamine 312.481 5.088 
94 Propiverine 367.492 4.006 
95 Sertindole  440.951 4.68 
96 Tamulosin 408.524 2.72 
97 Trihexyphenidyl hydrochloride 337.936 4.418 
98 Trihexyphenidyl 301.475 4.418 
99 Tropicamide 284.361 1.432 
100 Trospium Chloride 427.96 2.35 
101 Amosulalol 380.141 1.664 
102 Arotinolol 371.552 2.689 
103 Asenapine maleate 285.775 3.879 
104 Bunazosine hydrochloride 409.921 2.234 
105 Bunazosin 373.46 2.234 
106 Bunitrolol hydrochloride 284.789 0.485 
107 Carvedilol phosphate hydrate 406.486 4.015 
108 Carvedilol 406.486 4.015 
109 Dapiprazole hydrochloride 361.921 3.003 
110 Dipivefrin hydrochloride 387.909 3.485 
111 Batanopride hydrochloride 392.33 1.842 
112 Ergometrine 325.414 1.539 
113 Ergonovine maleate 441.49 1.539 
114 Guanadrel sulphate 524.648 0.294 
115 Ifenprodil tartrate 325.454 4.186 
116 Labetalol hydrochloride 364.876 2.356 
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117 Labetalol 328.415 2.356 
118 Levomepromazine hydrochloride 364.942 4.508 
119 Levomepromazine maleate 328.421 4.508 
120 Levomepromazine 328.481 4.508 
121 Medroxalol 372.426 2.124 
122 Cilansetron hydrochloride 373.886 3.165 
123 Methylergometrine 339.441 2.063 
124 Methylergonovine maleate 455.517 2.063 
125 Mianserine hydrochloride 300.833 3.706 
126 Mianserine 264.372 3.706 
127 Moxisylyte hydrochloride 315.844 3.4 
128 Cilansetron 319.409 3.165 
129 Naphazoline hydrochloride 246.741 2.06 
130 Naphazoline nitrate 210.28 2.06 
131 Cinanserin hydrochloride 376.953 3.825 
132 Oxymetazoline hydrochloride 296.843 3.283 
133 Oxymetazoline 260.382 3.283 
134 Phenoxybenzamine hydrochloride 340.295 4.579 
135 Phenoxybenzamine 303.834 4.579 
136 Pimozide 461.557 5.522 
137 Pseudoephedrine hydrochloride 201.698 1.235 
138 Pseudoephedrine sulfate 330.474 1.235 
139 Pseudoephedrine 165.237 1.235 
140 Quetiapine fumarate 383.518 2.657 
141 Silodosin 459.566 2.845 
142 Terasozin hydrochloride hydrate 387.444 1.381 
143 Terasozin 387.444 1.381 
144 Tetrahydrozoline hydrochloride 236.746 2.185 
145 Tetrahydrozoline 200.285 2.185 
146 Tetryzoline 200.285 2.185 
147 Tolazoline hydrochloride 196.681 1.152 
148 Tolazoline 160.22 1.152 
149 Tramazoline hydrochloride 215.3 2.539 
150 Tramazoline 215.3 2.539 

Physicochemical properties of drug molecules play an important 
role throughout the processes from the site of oral administration to 
the site of its action3. Undesirable physicochemical properties point 
to the potentially undesirable pharmacokinetic behavior. 
Measurement of such properties in the ADME/T profiling of NCEs 
(New Chemical Entities) has become commonplace in the industry. 
Predictions of these properties using in silico models have gained 
popularity in the recent years due to the availability of reliable 
methods, models and the related commercial softwares 4. 

ADME/T properties 

ADME/T properties of 150 anti-cancer compounds have been 
calculated and the results were shown in Table (1).  FPSA is Fast 
Polar Surface Area and the molecules whose FPSA is greater than 
140Å exhibited poor permeability. All the 150 compounds taken for 
the present study had FPSA value less than 140, which indicated that 
these compounds possessed high permeability. For orally 
administered drugs, adequate aqueous solubility is of paramount 
importance since dissolution of the active drug (or its prodrug form) 
in the GI fluids precedes its oral absorption from the GIT. Oral 
bioavailability (fraction of the active form of an orally administered 
drug that reaches systemic circulation) is, thus, largely dependent on 
the aqueous solubility and membrane permeability.  

Aqueous solubility level and mode of solubility is as follows (5,6) 

0- Extremely low 
1- Very low 
2- Low 
3- Good, slightly soluble to soluble 
4- Optimal 
5- Very soluble 

Aqueous solubility, in turn, is dependent on several factors such as 
size and shape of the molecule, hydrophobicity, hydrogen bonding, 
crystalline/amorphous state and others7. A detailed account on 
solubility prediction has been provided by8 and 9.From the table 1, it 
was clear that 6 compounds are very soluble in water, 22 had 
optimal solubility and 51 exhibited good or slightly soluble to 
soluble character. 

Two main types of permeability, namely human intestinal 
permeability (important for the absorption of oral drugs) and blood-
brain barrier (BBB) permeability (important for the distribution of 
CNS active agents and toxicity of non-CNS drugs) are calculated. For 
orally administered drugs, several factors affect the oral absorption 
and ultimately, bioavailability of such drugs. Of these, permeability 
across human intestinal membrane represented the major step in 
the process of oral absorption of xenobiotics. Most of the drugs cross 
intestinal epithelia by passive diffusion mechanism, which in turn, 
largely depended on the physicochemical properties of the drug. 
Hence, developing predictive in silico models of human intestinal 
permeability was thought of great significance for ADME/T profiling 
of the NCEs. BBB permeability is a crucial factor which needs careful 
consideration in the ADME/T profiling. CNS drugs must cross BBB to 
exhibit therapeutic effect whereas non CNS drugs are expected not 
to cross the BBB to avoid unwanted side effects. 

 Blood Brain Barrier level of a compound varies from 0 to 4 
indicated (10) 

0- Very high 
1- High 
2- Medium 
3- Low 
4- Undefined penetration level. 

Among the 150 compounds, nature of only 4 of them were 
undefined, 24 possessed very high penetration capacity, 55 have 
high level of penetration, 27  exhibited medium  and 31 showed low 
penetration. Compounds those showed penetration to BBB can be 
used as CNS drugs. CNS active drugs can cross BBB by several 
mechanisms, including passive diffusion. This assumption formed 
the basis for developing earlier BBB prediction models11. 

HIA indicated the Human Intestinal Absorption. Intestinal 
absorption is defined as a percentage absorbed rather than as a ratio 
of concentrations. According to13, ADMET predicts the Human 
Intestinal Absorption (HIA) after oral   administration. A well-
absorbed compound is one that is absorbed at least 90% into the 
bloodstream in humans.  
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As per Accord Excel, If HIA LEVEL is 12 

0- Good absorption 
1- Moderate 
2- Low 
3- Very low 

It was interesting to see that majority of the compounds i.e, 132 
were showed good absorption, only 3 compounds had very low, 8 
members exhibited low absorption and 7 compounds will absorb 
moderately.  

 This can be used for the classification of compounds with high or 
low fractional absorption. Overall, HIA represents a complex 
phenomenon highly dependent on the physicochemical properties of 
the compounds. 

Hepatotoxicity plays a crucial role in drug discovery. In Accord 
Excel, if the14 
Heptox = 0 (non-toxic) 
Heptox = 1 (toxic)  
In the present study of 150 compounds, only 13 compounds were 
toxic in nature. These compounds can be undergone some 
modifications in order to become  potential drugs. 

Plasma protein binding level is very important factor for finding the 
distribution rate of the compound. Human Plasma Protein Binding 
(PPB) involves reversible association of drugs with plasma proteins 
such as albumin and others. Drugs are in equilibrium between their 
protein-bound and free forms. Since only free drug exhibited the 
intended therapeutic effect, the PPB affinity of drugs or NCEs 
becomes a crucial property. Thus, PPB is significant with respect to 
the toxicity, pharmacology and pharmacokinetics of the drugs. For 
these reasons, development of the in silico models for the prediction 
of extent of PPB is an active area of predictive ADME/T. 

Plasma protein binding level is 15 

0 = ≤90%   
1 ≥ 90% 
2 ≥ 95% 

From table 1, it was clear that 54 compounds showed greater than 
or equal to 95% of binding affinity towards plasma protein, 45 of 
them had greater than or equal to 90% of binding range, whereas 51 
constitutes less than 90% affinity. 

Drug Blood-to-Plasma Concentration Ratio (Rb) is a measure of drug 
distribution within blood (binding to plasma protein and/or blood 
cells). It is related to either the volume of distribution or clearance of 
the drug. Even though the determination of Rb is relatively simple, 
such data is absent in most pharmacokinetic studies16. 

Inhibition or Non-inhibition of CYP450 2D6 14, 17 
Non inhibitors of CYP450 2D6=0  
Inhibitors of CYP450 2D6= 1 

Chemical transformations of xenobiotics by liver (and other tissues 
and organs), i.e., metabolism, are central to the ADME/T profiling. It 
is extremely difficult to predict metabolic rate of drugs due to the 
complex nature of the processes involved. Of the two sets of 
metabolic transformations, oxidation(s) by CYP enzymes (phase I 
reactions) are crucial. Majority of the oxidative metabolism is 
brought about by three CYP isoforms 3A4, 2D6 and 2C9. Majority of 
the drugs are either substrates or inhibitors of the CYP enzymes. 
Some drugs also act as CYP inducers thereby speeding up 
metabolism of the co-administered drugs. The most important 
implication of either inhibition/induction of CYP family proteins is 
clinically significant and at times, potentially fatal due to drug-drug 
interactions. Hence, CYP inhibition assays are routinely performed 
for NCEs to identify problematic candidates during the early phases.  

Here, in this work we also found the CYP protein affinity of the same 
150 compounds. It is clearly given in table 1 that 74 compounds 
showed non-inhibition and rest inhibited CYP. 

Lipinski’s Rule of Five 

According to Johnson and Wolfgang 18, compounds should possess 
certain properties to be accepted as drug. Those properties were 
formulated by Lipinski in 1997. It is a rule of thumb to evaluate drug 
likeness, or to determine if a chemical compound with a certain 
pharmacological or biological activity has properties that would 
make it a likely active drug.  

Lipinski’s Rule of Five for all the 150 compounds were calculated 
and tabulated in table2. Among the 150 drugs, only one compound 
was violating the rule. In order to access molecular weight and LogP 
of the compounds, whose value was not available from Accord Excel, 
we depended on Discovery studio 2.1 version. The results were 
shown in table3. 

With the dawn of new century, major technological advances in the 
drug discovery field have revolutionized absorption, distribution, 
metabolism, excretion and toxicity (ADME/T) profiling of new 
chemical entities (NCEs) among others. The present work 
establishes ADME/T and Lipinski properties and its usefulness in 
screening, through which efficiency or side effects of drugs can be 
determined at early stages in drug discovery. We will predict these 
properties of all the existing anticancer compounds and also other 
compounds in future. 
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