INTRODUCTION

The epidemiology of chronic kidney disease (CKD) is a world-wide phenomenon with poor outcome. In CKD, there is a decreased number of functional nephrons and the remaining healthy nephrons maintain the Glomerular Filtration Rate (GFR) by hyperfiltration which consequently leads to compensatory hypertrophy. The Kidney Disease Outcomes Quality Initiative (K/DOQI) defines chronic kidney disease as either kidney damage or a decreased kidney glomerular filtration rate of less than 60 ml/min/1.73m² for 3 or more months. Classification is a major step in CKD which is done by quantifying the glomerular filtration. GFR will assess the filtering capacity of nephrons in the kidney. It is an index for renal function and without an awareness of GFR, the clinical features in CKD may remain silent and deceptive. GFR is helpful for early detection of renal impairment and is a good indicator for the need of dialysis. The K/DOQI classified CKD patients based on GFR into five stages. These are stage 1 (GFR ≥ 90 ml/min/1.73 m²), stage 2 (GFR 60 to 89 ml/min/1.73 m²), stage 3 (GFR 50 to 59 ml/min/1.73 m²), stage 4 (GFR 15 to 29 ml/min/1.73 m²) and stage 5 (GFR less than 15 ml/min/1.73 m²).

CKD staging and thereby, the assessment of renal function is helpful for clinicians for proper diagnosis and to undertake suitable therapeutic measures. After third decade, GFR starts declining around 0.75 ml/min/year in normal people. It may be further aggravated in older age. This may be due to either physiological or pathological processes which include a decline in the vascular elasticity of kidneys with ageing, besides diabetes and hypertension which are common associations during senescence.

Gold standards for GFR assessment employ Inulin and Radiolabeled substances but both these are not free of adverse effects and hence do not constitute routine investigations. Estimation of serum creatinine is a simple method and commonly used for estimation of GFR. However, serum creatinine based GFR has its own drawbacks like the tubular secretion of creatinine, and variation of serum creatinine from individual to individual based on muscle mass. Additionally, it varies with the assay procedure. Besides this, any significant rise of serum creatinine reflects already a fall of about 50% of GFR. In spite of these shortcomings of serum creatinine as an indicator for CKD, it still serves as an acceptable parameter for diagnosis of CKD in clinical practice. Measured Creatinine clearance by using 24 hours urine has its own disadvantages as it will not be possible to collect accurate 24 hour urine in older people and dialysis patients.

Measuring GFR can be done by employing different equations using serum creatinine. These methods are simple, cost effective and less time consuming. The most common formulae are Cockcroft-Gault formula (CG) and Modification of Diet in Renal Disease (MDRD), Mayo Clinic Quadratic Equation (MCQE) has been brought forth as an alternative. MDRD and MCQE are based on clearance of Iodothalamate where as CG is based on the creatinine clearance. These three formulae too have their own limitations.

The current study was undertaken to estimate and compare the CG, MDRD and MCQE equations in assessing the GFR in control and CKD groups.

MATERIALS AND METHODS

The study comprised of 251 subjects. Of these, control group comprised of 123 age and sex matched healthy individuals who were free of features of kidney disease and were having a normal blood urea and serum creatinine level. The upper limit for serum creatinine levels was 1.2 mg/dl and the corresponding value for blood urea was 45 mg/dl. Individuals suffering from diseases that are likely to alter these parameters were excluded from the study.

The study was undertaken to estimate and compare the CG, MDRD and MCQE equations in assessing the GFR in control and CKD groups.

Keywords: CKD, eGFR, Serum Creatinine, CG, MDRD, MCQE.
meters squared. Based on BMI they were categorized as underweight (<18.4), normal (18.5-22.9), overweight (23-24.9) and obese (>25). Individuals with a BMI of 25 to 29.9 were regarded as mildly obese whereas those with a BMI exceeding 30 were considered as moderately obese. Moderately obese subjects were excluded from the study.

In all these groups blood urea and serum creatinine were measured. The blood urea was estimated by GLDH – Urease method. Serum creatinine was estimated by Jaffes method. The eGFR was computed by the following methods:

1. Cockcroft-Gault Creatinine Clearance (ml/min) = (140 - age) x [weight in kg] / Serum Creatinine (mg/dl) x 72. (Multiply with 0.85 if female) CG formula is adjusted to body surface area (BSA).

2. MDRD Creatinine Clearance (ml/min/1.73 m2) = 186 x (Serum Creatinine (mg/dl))1.154 x (age in years) - 0.203 x 0.742 (Multiply with 0.742 if female).

3. The MCQE estimated GFR (ml/min /1.73 m2) = [1.911 + 5.249 / SCr – 2.114 / SCr2 – 0.00686 x age (years)] [- 0.205 if female]. Where SCr is Serum Creatinine in mg/dl. Values <0.8 mg/dl set to 0.8 mg/dl, as per the reported method.

All the data are expressed in Mean and Standard deviation. For the statistical significance, Z test was performed.

RESULTS

Table I: The diagnostic criteria for CKD consisting of blood urea and serum creatinine were significantly higher (p<0.001) in CKD patients when compared to control.

<table>
<thead>
<tr>
<th>Control (n=123)</th>
<th>CKD Patients (n=128)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (mean±SD) years</td>
<td>44.02±3.76</td>
</tr>
<tr>
<td>Sex (Males %)</td>
<td>69%</td>
</tr>
<tr>
<td>(Females %)</td>
<td>31%</td>
</tr>
<tr>
<td>Body weight(kgs)</td>
<td>66.72±6.64</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>172.67±5.17</td>
</tr>
<tr>
<td>Blood urea (mg/dl)</td>
<td>28.55±8.16</td>
</tr>
<tr>
<td>Serum Creatinine (mg/dl)</td>
<td>0.90±0.13</td>
</tr>
</tbody>
</table>

**p<0.001

Table II: Most of the subjects in both control and CKD patients had normal BMI. The number of subjects falling under lower and higher spectrum of BMI in both the groups was much less.

<table>
<thead>
<tr>
<th>BMI</th>
<th>Control (n=123)</th>
<th>CKD Patients (n=128)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under weight (<18.4)</td>
<td>05 (4%)</td>
<td>16 (12%)</td>
</tr>
<tr>
<td>Normal (18.5-22.9)</td>
<td>74 (60%)</td>
<td>83 (65%)</td>
</tr>
<tr>
<td>Over weight (23-24.9)</td>
<td>29 (24%)</td>
<td>19 (15%)</td>
</tr>
<tr>
<td>Mildly Obese (25-29.9)</td>
<td>15 (12%)</td>
<td>10 (8%)</td>
</tr>
</tbody>
</table>

Table III: When the creatinine clearance values between control and CKD cases were compared on the basis of CG, MDRD and MCQE equation it was observed that the values were significantly decreased (p<0.001) in the CKD cases as per all the three equations. In control group, there was no significant variation in creatinine clearance in respect of CG and MDRD equation (p= not significant).

However the value of clearance as per the MCQE equation was significantly higher (p<0.001) when compared to CG or MDRD values.

In CKD group, there was no significant difference in creatinine clearance in respect of CG, MDRD and MCQE formulae (p= not significant).

Table IV: When the creatinine clearance was compared age wise in control group, it was noticed that there was no significant difference in the values in 20-29, 30-39, 40-49 and 50-59 years range in respect of CG and MDRD equation (p= not significant). But in the age range of 60-70 years the creatinine clearance was significantly higher (p< 0.05) as per the MDRD equation.
In all the age groups in controls the creatinine clearance as per MCQE method was significantly higher when compared with CG and MDRD (p<0.001).

Table V: In control group both CG and MDRD equation included a much higher number of normal individuals as having creatinine clearance value below <90 ml/min/1.73m2. This constituted 48% and 49.6% in respect of CG and MDRD. Thus many control cases which were apparently healthy with normal serum creatinine were included as CKD patients under stage 2 and stage 3 of CKD. As per MCQE method, only 10% of control cases were included under stage 2 of CKD and there was not a single case under stage 3. Therefore MCQE appears to be comparatively a better method for assessing GFR in healthy control.

Table VI: The distribution of CKD into different stages on the basis of CG, MDRD and MCQE does not show any appreciable difference in respect of stages 1 to 4, however for stage 5, there is a closer compatibility between MDRD and MCQE equations. Therefore for assessment of renal function in CKD patients MDRD or MCQE are appear to be almost equally appropriate.

DISCUSSION

Evaluation of renal function by estimating GFR is one of the most important aspects in the management of CKD. Accurate GFR measurement is carried out by infusion of a substance like 51Cr-EDTA or 99mTc-DTP19. But these are neither cost effective, nor free of risk and hence are not suitable for routine clinical practice. Serum Creatinine is also a sensitive marker of GFR associated with changes in renal function20. However, serum creatinine alone cannot provide the exact status of the renal impairment because appreciable rise of serum creatinine is required to identify 50% of fall in GFR. Therefore, serum creatinine based estimated GFR (eGFR) was introduced for more accurate results. It does not require utilization of nephrotoxic contrast medium, but this procedure requires timed urine collection (24 hours), which introduces its own inaccuracy and inconvenience21.

In the year 1976, Cockcroft and Gault formulated CG formula on the basis of observations done on the male hospitalized patients by using 24 hours urine creatinine excretion from two 24 hours urine collections obtained. In the case of women, the eGFR is corrected by multiplying with 0.85. The main purpose of CG is to calculate the Creatinine clearance12. But the CG equation is biased because of the body weight parameter in the equation22. Based on body weight CG eGFR overestimates GFR in obese and underestimates in lean individuals. However, this can be overcome by adjusting to body surface area. At the same time, there are doubts about the accuracy of CG formula in individuals with normal renal function especially in older age group people23 because the age in the CG formula is inversely proportional to eGFR.
In the year 2000, Levey introduced a new formula which was referred to as MDRD and this was based on the renal clearance of 131I-iothalamate in patients with moderate CKD. But applicability of MDRD in healthy individuals is not clearly understood. The importance of MDRD formula is, it does not require patient's weight and hence no need for body surface area. Johnson and Lamb reported that it can only estimate lower GFR values that is less than 60 ml/min/1.73m2 with accuracy. Hence it can give better result only when GFR declines. Rule reported that MDRD did not improve in performance even after recalibration of serum creatinine and there is still bias in patients with CKD.

In the year 2002, NFKE-DQOI published clinical practice guidelines and proposed uniform use of eGFR for grading CKD and recommended the use of GFR and MDRD formulae. But the accuracy of these two formulae in staging of CKD patients is still debated. Corsonello suggested that several drugs cause depression of GFR and therefore detection of CKD in early stages where the serum creatinine is near normal is important for proper therapeutic management. But CG and MDRD formulae have maximum disagreement in the low and normal serum creatinine ranges, thus causing inaccuracy. There exists more controversy around the CG and MDRD accuracy in elderly people and End stage renal disease. Because of various ambiguities in the assay of the eGFR by CG and MDRD methods as highlighted above, the other alternative method i.e. Mayo clinic quadratic equation (MCQE) is taken into consideration for estimating eGFR. In the year 2004, Ruhl and others put forth that new equation MCQE on the basis of 131I-iothalamate clearance in 320 patients with CKD and 580 healthy individuals. Due to mixed population, the result of creatinine dependent MCQE gave intermediate performance, though it does not underestimate normal GFR. Hence MCQE is found to be a better alternative to CG and MDRD.

In the present study, creatinine clearance values using CG, MDRD and MCQE in CKD patients are significantly lowered when compared with control (p<0.001) (Table III). This is evident by raised serum creatinine in CKD group. As creatinine is the common parameter in all the three formulae, the CG, MDRD and MCQE based eGFR is altered. In control group, there is no significant difference between CG and MDRD equation. But MCQE registered significantly higher value of eGFR (p<0.001) when compared with both CG and MDRD.

In the present study mean GFR by MDRD and Cockcroft-Gault prediction formulae perform poorly in underestimating GFR. In our study mean GFR by CG, MDRD and MCQE was observed to be 92.12 ml/min/1.73 m2±20.41, 92.61 ml/min/1.73 m2±20.52 and 114.94 ml/min/1.73 m2±19.11 respectively in the control group. In ageing process, there is a decline of muscle mass called sarcopenia which leads to decreased level of muscle creatinine and later the serum creatinine. But normally serum creatinine is an increased level of serum creatinine with ageing which is due to a decline in kidney function, typically seen as age advances, and is associated with decreased level of eGFR. In our study of control subjects, it was observed that there was a progressive decline in GFR as the age advances and it is true by all the methods of estimation of GFR. (Table IV). When a comparison was made between CG and MDRD methods in respect of older age group, it was reported by both Garg and Wieczorowska that older individuals more than 60 years of age showed a higher value for GFR by MDRD method in comparison to the CG method. Our observations in the present study in respect of GFR in control over 60 years of age as estimated by MDRD and CG methods are in agreement with the authors mentioned above. Carnevale reported that MCQE provides overestimated value in old subjects compared with 24 hours creatinine clearance. In our study of controls, MCQE provided a significantly (p<0.001) higher GFR values in all age groups when compared with CG and MDRD. More or less it is the MCQE method which reasonably approximates to normal GFR values in all age groups.

In our study both CG and MDRD formulae included normal healthy individuals in stage 2 and stage 3 of CKD though there was no apparent evidence of renal impairment and they had a normal serum creatinine level. They comprised 46.4% in stage 2 by CG and 48% by MDRD. In case of stage-3 the inclusion of healthy individuals was to the extent of 1.6% by both the CG and MDRD equations (Table-V). This suggests that CG and MDRD underestimate GFR. In case of MDRD, it generally underestimates GFR at the higher end or within normal ranges and provides inaccurate results. Both the MDRD and Cockcroft-Gault prediction formulae perform poorly in patients with normal or near-normal renal function. The new equation MCQE placed only 10% of healthy individuals in CKD stage 2 and there was not a single case of control in stage 3. Both the CG and MDRD formulae included around 50% of control population under CKD category with a GFR less than 60 ml/min/1.73m2. Although Bara put forth that normal healthy Indian population has a lesser GFR compared to Western population, a more recent study by Rajeshwari in Indians has reported that CG and MDRD equation classified more than 50% subjects in stage 2 of CKD and 0.8 to 1.4 % under stage 3 of CKD depending on equation. Therefore the observation in our study in healthy control population is in concurrence with the findings of Rajeshwari.

In CKD patient's serum creatinine is raised due to an alteration in renal function and is finally reflected in decreased GFR. In clinical practice, staging of CKD is very important because it is essential for management and medication. Generally stage 1 and 2 are asymptomatic, anemia is a common feature in stage 3 to 5 and in stage 5 which involves serious features like neuropathy and pericarditis, dialysis becomes a mandatory treatment. In our study mean GFR by MDRD and Cockcroft-Gault prediction formulae perform more accurately when GFR is less than 60 ml/min, but overestimated GFR in groups like elderly people. Poggio likewise corroborated that GFR gave better result when compared with GFR in CKD patients. Kuan also reported that CG formula overestimated the GFR in ESRD when compared with 24 hours creatinine clearance andulin clearance and suggested that CG provided more accurate results in ESRD group. Tenel contradicted the above fact and reported that CG was a better indicator of GFR than MDRD in advanced stages of CKD when compared with golden standard method (mean of urea and creatinine clearance). Buitrago suggested that MDRD formula has to be excluded from consideration in elderly subjects and males with cardiovascular risk. Bostom also suggested that CG is more reliable than MDRD in CKD patients with normal serum creatinine. Melloni preferred CG formula for classification of CKD patients in Acute Coronary syndrome. Kuzminskis noted that CG and MDRD both gave accurate results for classifying early and moderate CKD. Kuan reported that MDRD was more accurate than CG in end-stage renal disease.

In our study in CKD groups (Table VI) the three formulae did not include any subject under stage 1. This could be due to the reason that the subjects might not have sought any medical assistance as they did not manifest any clinical features of CKD with a normal or near normal GFR. In stage 2, CG, MDRD and MCQE included only 0.85%, 0.8% and 2% of CKD cases respectively. In stage 3 CKD cases, the features of the diseases are not very severe to demand attention, the patients in this category do not usually visit a hospital nor seek medical attention.
accounting for their lack of awareness. The other reason for only a few number of subjects falling under stage 1 and stage 2 in CKD may be due to that, the three formulae underestimated GFR as they might have also been done in controls. Therefore staging becomes inappropriate.

Most of the patients of CKD in our study belonged to Stages 3 to 5 with a higher preponderance in stage 5 as the data obtained were from the dialysis unit of the hospital. In respect of stages 3 and 4, there is no significant difference in the distribution of CKD cases with reference to all the equations. Stage 3 comprises of 28.2%, 26% and 23% of CKD cases according to CG, MDRD and MCQE respectively. Likewise stage 4 includes 32%, 28.2% and 27% of total CKD patients according to CG, MDRD and MCQE respectively. Therefore it can be inferred that with regard to stages 3 and 4 of CKD, the difference according to the 3 methods employed to assess GFR is not significant. The distribution of CKD cases in stage 5 is almost similar according to MDRD and MCQE methods and comprise 45.3% and 48% respectively. It is the CG equation which gives a lower value of 39%. Thus there exists an incompatibility in grading patients in stage 5. Therefore taking into account the whole gamut of CKD patients, it can only be stated with some reservation that either MDRD or MCQE equation can be used to assess GFR as both of them have close resemblance. Thus our observations in CKD cases are in concurrence with the observations of Marsik et al.

In view of various conflicting and ambiguous reports in the literature regarding the assessment and acceptability of GFR values in CKD patients it has become practically a very intricate and complicated predicament on the part of medical professionals to categorize the patients in different stages and institute appropriate treatment. However the present study infers with some degree of reservation that MDRD or MCQE formula is acceptable for normal controls and MDRD and MCQE are both satisfactory for CKD patients.

ACKNOWLEDGEMENTS

The authors acknowledge the help and support provided by the Department of Nephrology, Maharaja’s institute of medical sciences, Nellimarla, Vijanagaram district. Our heartfelt gratitude and respects to Dr. Predeep Kumar Behera, Professor & H.O.D, Department of Biochemistry, MMS for his tremendous encouragement and immense support in writing the manuscript. We would also like to thank Institute of Science, GITAM University for providing the necessary facilities to carry out this work.

REFERENCES