EVALUATION OF METHANOLIC EXTRACTS OF IN VITRO GROWN TINOSPORA CORDIFOLIA (WILLD) FOR ANTIBACTERIAL ACTIVITIES

MADHU KUMARI

*Department of Botany, B.R.A.Bihar University, Muzaffarpur. Email: madhu_kumari58@yahoo.com

Received: 25 June 2012, Revised and Accepted: 19 July 2012

ABSTRACT

Tinospora cordifolia commonly known as Guduchi, is an endangered, medicinal plants found throughout India, used in Ayurvedic rasayans to improve the immune system, memory and mental intelligence. It is also regarded as a liver protector. Due to ever growing demand, the tissue culture techniques have been employed for multiplication and conservation of the important medicinal plant like Tinospora cordifolia. Thus in order to obtain in vitro plants, a protocol was developed for rapid clonal propagation of Tinospora Cordifolia through nodal explants on Murashige and Skoog medium containing different concentration of growth regulators BAP (1-3 mg/l) and Kinetin (1-2 mg/l). The elongated shoots transferred on MS medium supplemented with NAA (0.5-1.0 mg/l) in order to develop roots thus in vitro grown root plantlets were transferred to sandy soil. The methanolic extract of this plant was found to have antimicrobial activity against Bacillus subtilis (MTCC98), E coli (MTCC1), Staphylococcus aureus (MTCC298), Salmonella typhi (MTCC737). The largest zone of inhibition (18 mm) was found against Staphylococcus aureus. The preliminary phytochemical screening revealed the presence of alkaloids, flavonoids, saponins, carbohydrates, and sterols in in vitro grown plants like callus, leafy shoots and roots of Tinospora cordifolia.

Keywords: Tinospora cordifolia (Wllld). In vitro multiplication, methanolic extracts, antibacterial activity.

INTRODUCTION

Medicinal plants have contributed immensely to health care. An impressive number of modern drugs have been isolated from natural sources, notably of plant origin. Tinospora cordifolia (Willd.) Miers Hook. & Thoms. is a widely used in folklore and Ayurvedic systems of medicine, belongs to the family Menispermaceae. It is a glabrous climbing shrub with heart shaped leaves and distributed throughout tropical Indian subcontinents. Plants have been a source of medicine in the past centuries and today scientists highlighted the potential health beneficial principles from phyto sources. The WHO estimates that up to 80% of people still rely mainly on traditional remedies such as herbs for their medicine. The notable medicinal properties reported are anti-diabetic, anti-periodic, anti-spasmodic, anti-microbial, anti-inflammatory, anti-arithmetic, antioxidant, anti-allergic, anti-stress, anti-leproptic, anti-malarial, hepatoprotective, immunomodulatory and antiinflammatory activities. Its root, steam and leaves, are used for their medicinal properties. The root of this plant is known for its anti-stress, anti-leproptic and anti-malarial activities. The anti-microbial activity of T. cordifolia was observed in root, stem and leaf extracts on pathogenic microorganisms.

The stem of Tinospora cordifolia is one of the constituents of several ayurvedic preparations used in general debility, dyspepsia, fever and urinary diseases.

An impressive number of modern drugs have been isolated from natural sources, many based on their use in traditional medicine. Therefore, the micropropagation protocols for elite stocks of T. cordifolia are urgently needed. Some studies have reported in vitro plant regeneration and micropropagation of T. cordifolia needed. Micropropagation through culture of explants having pre-existing meristem is powerful options which allow multiplying genetically stable and true-to-type progeny of the species that are rare, endangered and difficult to propagate. In vitro propagation in T. cordifolia was reported through nodal segments through axillary shoot proliferation. Micropropagation ensures not only continuous supply of plant throughout the year but also prevent the destruction of the natural population of medicinal plant. During past few years, there has been an increase interest for in vitro multiplications and germplasm conservation of rare, endangered, aromatic and medicinal plants, to develop of efficient protocols for its regeneration through tissue culture methods. The available literature on the medicinal properties of this plant pertains mainly to the field grown plants. Although the plant was successfully raised under in vitro tissue culture condition, to study the antimicrobial activity of in vitro raised plant of T. cordifolia. In this report, we describe the procedure for proliferation, maintenance of in vitro grown plants and callus, both on MS medium supplemented with growth regulators and antimicrobial activity of methanolic extract of T. cordifolia as well as its preliminary phytochemicals screening.

MATERIALS & METHODS

Source of Explants

In order to obtain in vitro plants, a protocol was developed for rapid clonal propagation of Tinospora Cordifolia through mature nodal explants. The explants were collected from the campus of the department of Botany, B R A Bihar University, Muzaffarpur. These nodal segments were cuts into 1.5cm to 2.0cm length with single node and internode intact. These nodal & internodal cutting were washed with 5% (v/v) detergent solution (tepol) for 10minutes followed by rinsed with running tap water for several times. In the laminar chamber the nodal segments were further treated with 70% alcohol for one minute followed by 0.1% (w/v) mercuric chloride treatment for 5 minutes, aseptically explants were washed with sterile distilled water for 3 to 4 times dried using sterile blotting paper which was ultimately used as explants for raising in vitro cultures.

Growth medium & culture condition

Murashige and Skoogs MS medium 1962 was used as nutrient source with or without growth hormones such as BAP, KN, and NAA either individually or in combination for culture explants. Sucrose 3% and agar 0.8% (Hi media) were used as carbon source and gelling agent respectively. The pH of the medium was adjusted to 5.8 and autoclaved at 121°C for 20 minutes. The cultures were maintained in the culture room at 25±2°C, 2% C, under white fluorescent light.

Shoot organogenesis and elongation

For multiple shoot induction from nodal explants were culture on MS medium supplemented with BAP (1-5 mg/l) alone or combination with Kinetin (1-2 mg/l) (Table 1). Data on percentage
of responding explants and number of shoots per explants were recorded after 25 days of initiation culture.

In vitro rooting plant establishment

Production of plantlets with rooting *in vitro* is important for successful establishments of regenerated plants in soil. The auxin NAA was used to induce rooting from *in vitro* raised shootlets. A range of concentration was tested (0.5, 1.0, 1.5 mg/L) for rooting. The maximum rooting was obtained on MS with NAA (0.5mg/L). The well rooting plantlets were transferred to plastic cups containing sandy soil. Plants started producing fresh shoots and roots after one week of transplanting. Later they were transported to the field condition and the survival rate was 70%.

Phytochemical Screening

The role of medicinal plants in disease control has been attributed to antioxidant properties of their constituents. The protective effect of plant products are due to the presence of several components such as enzymes, proteins, vitamins, carotenoids, flavonoids and other phenolic compounds. The methanolic extract of *Tinospora cordifolia* (Miers.) were subjected to different tests to identify the nature of chemical constituents present in the plant material. The crude extract were screened qualitatively for the phytochemical constituents utilizing standard methods of analysis.

Preliminary Phytochemical Screening

The aqueous extract of the plant samples were prepared by soaking 100gms of *in vitro* grown *Tinospora cordifolia* plant extract in 200ml of methanol solvent.

A. Test for alkaloids: Presence of alkaloids in *Tinospora cordifolia* extract was determined by using two reagents, Dragendorff’s reagent and Mayer’s reagent. One ml extrate was mixed with 2ml of Dragendorff’s reagent yielded orange colour similarly one ml of extract mixed with few drops of Mayer’s reagent resulted into buff coloured precipitate. Both of these test confirms the presence of alkaloids in the methanolic extract.

B. Test for carbohydrates: (i) One 1ml of extract was mixed with 5ml Benedict’s reagent. The content was boiled for 5 minutes, yielded. The develop colour indicated the presence of carbohydrates in methanolic extract.

(ii) In 1ml of extract mixed with few drops of Molisch’s reagent followed by few drops of conc. H$_2$SO$_4$. A red or dull violet colour was precipitated indicate the presence of carbohydrates in methanolic extract of plants.

C. Test for reducing sugar: One ml of the extract mixed with few drops of Fehlings B. The brown precipitate was indicated the presence of reducing sugar in methanolic extract.

D. Test for steroids: One 1ml of the extract was mixed with 10ml chloroform followed by addition of H$_2$SO$_4$. The red yielded, confirms the presence of steroids in methanolic extract.

E. Test for Terpenoids: One ml of the extract was mixed with 2ml CHCl$_3$ followed by added few drops of conc. H$_2$SO$_4$.A reddish brown colour appeared at interface, conforms the presence of terpenoids.

F. Test for Saponins: One 1ml of filtrate was diluted with 2ml distilled water, was shaken vigorously and allowed to stand for 10 minutes. Development of foam on surface of the mixture, lasting for 10 minutes indicated the presence of saponins.

G. Test for flavonoids: The 1ml of filtrate was mixed with 2ml of 1% lead acetate. Development of brown precipitate indicated the presence of flavonoids. Further work is necessary to isolate and purify the compounds of *in vitro* grown *Tinospora cordifolia* plants and callus extracts, which will allow the scientific community to recommend their utilization as an accessible alternative to synthetic antibiotic.

Antibacterial Assay

Preparation of Plant Extract

In Vivo grown plants, callus, were weighted and grinded with help of motor & pestle. About 50gms of power grinded material was extracted in soxhlet apparatus with 250ml of methanolic solvent. The extracted solvent was removed from the extract under reduced pressure with rotary vacuum evaporator. The sticky greenish-brown substance was obtained and stored in refrigerator condition till use.

Culture of microorganism

Both gram positive and gram negative bacteria were used as test organism for this study. The organisms like *Escherichia coli* MTCC 2845, *Salmonella typhi* MTCC 737, *Staphylococcus aureus* MTCC 98, *Bacillus subtilis* MTCC 441, were used for抗菌 assay. The bacteria were grown in nutrient broth media at 37°C, for antibacterial assays. The disc diffusion method was adopted for antimalarial study of plant extract. Briefly, 20ml of media was transferred aseptically into each sterile petri dishes and allowed to solidify. An over night grown inoculums (100µl) suspension was spread uniformly over the agar medium using sterile glass rod for uniform distribution of bacteria. The readily prepared sterile discs were loaded with different concentrations of about 10-20 µg of plant extract of *Tinospora cordifolia*. The paper discus discs were placed on the medium and plates were incubated at 37°C for 24 hours. The antibacterial activity was recorded by measuring the width of the clear inhibition zone around the disc in millimeter.

RESULTS AND DISCUSSION

Morphogenetic responses of the nodal explants of *T. cordifolia* cultured on MS medium containing BAP either alone or in combination with kinetin and NAA are summarized in (Table 1). Explants cultured on MS medium containing BAP either alone or in combination with kinetin and NAA failed to induce shoot proliferation. The stimulating effect of BAP on multiple shoot formation has been reported for several medicinal plant species. The frequency of axillary shoots initiation and development per explants were increased with an increased in concentration of BAP up to 2mg/l (Fig-A).

![Figure 1: In vitro clonal propagation of Tinospora cordifolia (Miers.) from internodal explants.](image)

A. Shoot development and elongation from nodal explants on MS + BAP (1mg/l).

B. Multiple shoot formation from nodal explant on MS + BAP (1mg/l) + KN (0.5mg/l).

C. *In vitro* root induction on MS + NAA (0.5mg/l).

D. Hardening of tissue culture raised plantlets.
inhibitio

<table>
<thead>
<tr>
<th>Growth regulator gm/l</th>
<th>Concentration</th>
<th>% of response</th>
<th>Induction of shoots per explants</th>
<th>Induction of roots per explants</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAP</td>
<td>0.5</td>
<td>50</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>70</td>
<td>1-2</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>1+1</td>
<td>65</td>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>KN</td>
<td>0.5</td>
<td>40</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>70</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>60</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>BAP + KN</td>
<td>0.5 + 0.5</td>
<td>70</td>
<td>2-3</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>1+1</td>
<td>74</td>
<td>3-4</td>
<td>0.0</td>
</tr>
<tr>
<td>NAA</td>
<td>0.5</td>
<td>50</td>
<td>0</td>
<td>1-2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>50</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>BAP + NAA</td>
<td>0.5 + 0.5</td>
<td>80</td>
<td>2-3</td>
<td>4-5</td>
</tr>
<tr>
<td></td>
<td>1+1</td>
<td>90</td>
<td>3</td>
<td>5.0-7.0</td>
</tr>
</tbody>
</table>

The higher concentrations of BAP not only reduced the number of shoots proliferation on nodal explants but also resulted in stunted growth of the shoots. When the explants were cultured on MS medium with BAP 1mg/l and kinetin (0.5mg/l) the number of shoots proliferation was increased in each explants (fig-B). When BAP was used in combination with NAA the inductions of shoot as well as root both take place (fig-C). The complete plantlets were carefully removed from the medium and washed gently with sterilized double distilled water to remove any traces of medium on roots. Then they were transferred to sterile soil. Plantlets were hardened by keeping inverted glass beakers onto them to provide high humidity, controlled temperature and the intensity of light could be assured by cool, white fluorescent tubes. After two weeks, plantlets were gradually transferred to partial sunlight for acclimatization. Finally, they were transplanted to earthen pots containing sterile garden soil (fig- D). After 22-28 days, these plantlets were simultaneously exposed to natural environment, where 70% plantlets survived well in the field (Table- 2).

Table 2: Data on Survival of transferred Regenerated Plants

<table>
<thead>
<tr>
<th>Transferred for Hardening</th>
<th>No. of Plants of Plants Survived</th>
<th>% Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>22</td>
<td>73.3</td>
</tr>
<tr>
<td>20</td>
<td>14</td>
<td>70</td>
</tr>
</tbody>
</table>

In this investigation, during the process of transfer to field the survival percentage was found to be decreased. There are various reasons for low survival of regenerated plants after transfer to natural soil. Gangopadhyay et al. 2002) reported that in vitro derived roots are often physiological functioning when in contact with the soil. The efficient micro propagation technique described here may be highly useful for raising disease free quality planting material of *T. cordifolia* for commercial and off season cultivation which not only help in improving economic condition of the farmer but also fulfill the market demand of herbal industries.

The antibacterial activity of aqueous, ethanolic and chloroform stem extract of *T. cordifolia* against number of Gram negative and Gram positive bacteria was reported by suggesting significant antimicrobial activity of ethanolic extract (Jeychandran et al., 2003). In the present work, the antimicrobial activity of medicinal extracts of in vitro grown products like callus, plantlets and roots of *T. cordifolia* was examined, the result shown in the Table- 4.

Table 4: Evaluation of antibacterial activity of the methanolic root extract of *in vitro* grown plants of *Tinospora cordifolia*.

<table>
<thead>
<tr>
<th>S.No</th>
<th>Microorganisms</th>
<th>Zone of Inhibition(m m)</th>
<th>Zone of Inhibition(m m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Escherichia coli (ve)</td>
<td>10m</td>
<td>15m</td>
</tr>
<tr>
<td>2</td>
<td>Salmonella typhi(-ve)</td>
<td>8m</td>
<td>10m</td>
</tr>
<tr>
<td>3</td>
<td>Staphylococcus aureus (+ve)</td>
<td>13m</td>
<td>18m</td>
</tr>
<tr>
<td>4</td>
<td>Bacillus subtilis (+ve)</td>
<td>9m</td>
<td>16m</td>
</tr>
</tbody>
</table>

 (+++) Prominently Present, (+) Moderately Present, (+) Slightly Present

The antibacterial activity of aqueous, ethanolic and chloroform stem extract of *T. cordifolia* against number of Gram negative and Gram positive bacteria was reported by suggesting significant antimicrobial activity of ethanolic extract (Jeychandran et al., 2003). In the present work, the antimicrobial activity of medicinal extracts of in vitro grown products like callus, plantlets and roots of *T. cordifolia* was examined, the result shown in the Table- 4.

Table 4: Evaluation of antibacterial activity of the methanolic root extract of *in vitro* grown plants of *Tinospora cordifolia*.

<table>
<thead>
<tr>
<th>S.No</th>
<th>Microorganisms</th>
<th>Zone of Inhibition(m m)</th>
<th>Zone of Inhibition(m m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Escherichia coli (ve)</td>
<td>10m</td>
<td>15m</td>
</tr>
<tr>
<td>2</td>
<td>Salmonella typhi(-ve)</td>
<td>8m</td>
<td>10m</td>
</tr>
<tr>
<td>3</td>
<td>Staphylococcus aureus (+ve)</td>
<td>13m</td>
<td>18m</td>
</tr>
<tr>
<td>4</td>
<td>Bacillus subtilis (+ve)</td>
<td>9m</td>
<td>16m</td>
</tr>
</tbody>
</table>

(+) gram positive bacteria, (-) gram negative bacteria

The methanolic extracts of in vitro grown plants and callus showed a broad spectrum of activity against all the bacterial strains at the tested concentration of 10 – 20µg/disc. They exhibited greater zone of inhibition for *Staphylococcus aureus* (18mm). The least activity was observed for *S. typhi* (8mm). The plants and their extracts used against microbial infections due to the presence of secondary metabolites such as alkaloids, phenols, flavonoids, terpenoids etc 22, 23 have documented the use of natural products as new antibacterial drugs. Preliminary phytochemical analysis of methanolic extract revealed the presence of alkaloids, carbohydrates, reducing sugar, glycosides, steroids, terpenes, lignin, saponins, tannins and flavonoids. The inhibitory effects of this medicinal plant on the test microorganisms may therefore, be due to the presence of the above phytochemical components. The isolation, and characterize, of the phytochemical compounds of the in vitro grown plants as potent antibacterial agents.

CONCLUSION

In conclusion, an efficient protocol was developed for multiple plant regeneration of an important medicinal plant *Tinospora cordifolia* (will). The protocol reported in this study can be used for rapid and large scale propagation of *Tinospora cordifolia*. The methanolic extract of in vitro grown *Tinospora cordifolia* was found to be of valuable for the synthesis of complex chemical substances.
sensitive to different microorganisms, thus this plant could be utilized as a natural source of antimicrobial drugs. Further studies are needed to isolate, characterize, and elucidation of the phytochemical compounds of the in vitro grown plants for formulation of antimicrobial drugs.

ACKNOWLEDGEMENT
The author would like to express her gratitude to the Head, Department of Botany, B.R.A. Bihar University, Muzaffarpur for providing the necessary laboratory facilities.

REFERENCES
7. A Brief review of Ayurvedic concepts Tinospora htm