A QSAR STUDY AT AM1 SEMI EMPIRICAL LEVEL OF 1, 3- DIARYL PYRAZOLE DERIVATIVES AS ANTITUMOR AGENTS AGAINST HUMAN DU145 PROSTRATE CANCER CELL LINE

SUPRATIM RAY*, CHARUSMRITI
Division of Pharmaceutical Chemistry Dr. B C Roy College of Pharmacy \& Allied Health Sciences, Bidhannagar, Durgapur, 713 206, India;
Email: supratimray_in@yahoo.co.in

Received: 7 September 2012, Revised and Accepted: 16 October 2012

Abstract

A QSAR study was performed by quantum chemical calculation only at the AM1 semi empirical levels to calculate the mulliken's charges and dipole moment of common atoms for twenty six 1, 3-diaryl pyrazole derivatives as antitumor agents against human DU 145 prostate cancer cells. Stepwise regression analysis is used as chemometric tool. The model indicates the importance of hydroxyl group at various position of the moiety. Presence of double bond attached pyrazole nucleus and the ester or acid group is beneficial for antitumor activity. The statistical quality of the model showed acceptable internal validation $\left(Q_{\mathrm{int}}^{2}=0.678\right.$ and $\left.r_{m(L O O)}^{2}=0.666\right)$, external validation $\left(Q_{e x t(F 1)}^{2}=0.711, Q_{e x t(F 2)}^{2}=0.693, r_{m(t e s t)}^{2}=0.637\right)$, and overall validation $\left(\mathrm{r}_{\mathrm{m} \text { (overall) }}^{2}=0.676\right)$. The study shows that mulliken's charges can be projected as a useful tool in the context of QSAR studies.

Keywords: QSAR, Mulliken's charge, Stepwise regression, Pyrazole, Cancer.

INTRODUCTION

Cancer is one of the deadliest diseases in human history. Despite significant advances, the cure rates for various malignancies are limited. So much more attention was given for the discovery and development of more potent anticancer agents. It was observed that incorporation of heterocyclic residues into perspective pharmaceutical lead candidates constitutes an important strategy which provides activity and safety features ${ }^{1,2}$. Among several heterocyclic moiety pyrazole derivatives exhibit a wide range of biological properties including promising antitumor activity. It was reported that 4-arylmethyl-1-phenylpyrazole and 4-aryloxy-1phenylpyrazole derivatives act as novel androgen receptor antagonists ${ }^{3}$. A study shows that 3 -(1H-indol-3-yl)-1H-pyrazole-5carbohydrazide derivatives have activity against human HepG-2, BGC823 and BT474 cell lines ${ }^{4}$. PC et al reported that pyrazole derivatives containing thiourea skeleton as anticancer agents 5 . Vujasinovic et al reported anticancer activity and QSAR analysis of some novel pyrazole derivatives ${ }^{6}$. The activity of 3, 5-diaryl-4, 5dihydropyrazole derivatives against EAC cell line and CoMFA analysis was also reported ${ }^{7}$. Some novel 4, 5-dihydro-1H-pyrazole niacinamide showed promising activity against BRAF (V600E) and WM266.4 human melanoma cell line ${ }^{8}$. Considering the above findings, we have performed a QSAR study at AM1 semi empirical
levels for twenty six 1, 3-diaryl pyrazole derivatives as antitumor agents against human DU 145 prostate cancer cell lines reported by Christodoulou et al ${ }^{9}$

MATERIALS \& METHODS

The Data-set and descriptors

The antitumor activities of substituted pyrazole derivatives against human DU 145 prostate cancer cells was reported by Christodoulou et al ${ }^{9}$ were used as the model data-set for the present QSAR analysis (Table $1 \& 2$). The reported cell viability (C) of the compounds was converted to logarithmic scale as $\log (1 / C)$. The whole data set contain twenty six compounds and all the compounds contain 19 common atoms (excluding hydrogen). The atoms of the molecules were numbered keeping serial numbers of the common atoms same in all the compounds (as shown in Figure 1). The mulliken's charges and dipole moment of common atom for twenty six pyrazole derivatives were calculated by CS MOPAC pro under CS Chemoffice software package ${ }^{10}$. During MOPAC analysis the wave function was treated as closed shell (restricted).

Sl No	R	R_{1}	\mathbf{R}_{2}	\mathbf{R}_{3}	R_{4}	Cell Viability (C)	$\log (1 / C)$
1	$\mathrm{OCH}_{2} \mathrm{CH}_{3}$	H	H	H	H	32	-1.50515
2	$\mathrm{OCH}_{2} \mathrm{CH}_{3}$	H	OH	H	H	38	-1.57978
3	$\mathrm{OCH}_{2} \mathrm{CH}_{3}$	H	H	OH	H	39	-1.59106
4	$\mathrm{OCH}_{2} \mathrm{CH}_{3}$	H	OH	OH	H	85	-1.92942
5	$\mathrm{OCH}_{2} \mathrm{CH}_{3}$	OH	H	H	OH	50	-1.69897
6	OH	H	H	H	H	72	-1.85733
7	OH	H	H	OH	H	53	-1.72428
8	OH	H	OH	OH	H	94	-1.97313
9	OH	OH	H	H	OH	39	-1.59106
10	$\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}$	H	H	H	H	67	-1.82607
11	$\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}$	H	OH	H	H	79	-1.89763
12	$\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}$	H	OH	OH	H	91	-1.95904
13	$\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}$	OH	H	H	OH	62	-1.79239

Model development

To begin the model development process, the whole data set ($\mathrm{n}=26$) was divided into training ($\mathrm{n}=20,75 \%$ of the total number of compounds) and test ($\mathrm{n}=6,25 \%$ of the total number of compounds)
(optimized by Q^{2}), and then the developed models were validated (externally) using the test set compounds.
sets by k-means clustering technique ${ }^{11}$ applied on standardized descriptor matrix of the mulliken's charges and dipole moment. The QSAR model was developed using the training set compounds

Table 2: Molecular scaffolds of the compounds along with their activity

Sl No	R1	\mathbf{R}_{2}	R_{3}	R_{4}	R_{5}	R_{6}	\mathbf{R}_{7}	Cell Viability (C)	Log (1/C)
14	H	H	H	H	OCH_{3}	$\mathrm{OCH}_{2} \mathrm{CH}_{3}$	0	82	-1.91381
15	H	OCH_{3}	H	H	OCH_{3}	$\mathrm{OCH}_{2} \mathrm{CH}_{3}$	0	64	-1.80618
16	H	H	OCH_{3}	H	OCH_{3}	$\mathrm{OCH}_{2} \mathrm{CH}_{3}$	0	81	-1.90849
17	H	OCH_{3}	OCH_{3}	H	OCH_{3}	$\mathrm{OCH}_{2} \mathrm{CH}_{3}$	0	62	-1.79239
18	OCH_{3}	H	H	OCH_{3}	OCH_{3}	$\mathrm{OCH}_{2} \mathrm{CH}_{3}$	0	77	-1.88649
19	H	H	H	H	H	$\mathrm{OCH}_{2} \mathrm{CH}_{3}$	0	80	-1.90309
20	H	H	H	H	OCH_{3}	OCH_{3}	0	75	-1.87506
21	H	H	H	H	H	OCH_{3}	0	78	-1.89209
22	H	H	H	H	OCH_{3}	$\mathrm{OCH}_{2} \mathrm{CH}_{3}$	S	94	-1.97313
23	H	H	H	H	H	$\mathrm{OCH}_{2} \mathrm{CH}_{3}$	S	88	-1.94448
24	H	H	H	H	OCH_{3}	OCH_{3}	S	83	-1.91908
25	H	H	H	H	H	OCH_{3}	S	87	-1.93952
26	H	H	H	H	OH	OCH_{3}	0	62	-1.79239

Statistical parameters

Figure 1: Common atom of the molecules

Software used for model development

MINITAB ${ }^{12}$ was used for stepwise regression method. STAISTICA ${ }^{13}$ was used for the determination of the LOO (leave-one-out) values of the training set compounds.

Stepwise Regression

In stepwise regression ${ }^{14}$, a multiple term linear equation was built step-by-step. The basic procedures involve (1) identifying an initial model, (2) iteratively "stepping", i.e., repeatedly altering the model of the previous step by adding or removing a predictor variable in accordance with the "stepping criteria", ($\mathrm{F}=3.5$ for inclusion; $\mathrm{F}=$ 3.4 for exclusion) in our case and (3) terminating the search when stepping is no longer possible given the stepping criteria, or when a specified maximum number steps has been reached. Specifically, at each step all variables are reviewed and evaluated to determine which one will contribute most to the equation. That variable will then be included in the model, and the process started again. A limitation of the stepwise regression search approach is that it presumes that there is a single "best" subset of X variables and seeks to identify it. There is often no unique "best" subset, and all possible regression models with a similar number of X variables as in the stepwise regression solution should be fitted subsequently to study whether some other subsets of X variables might be better.

The statistical qualities of various equations were judged by calculating several metrics namely squared correlation variance $\left(R^{2}\right)$, explained variance $\left(R_{a}^{2}\right)$, standard error of estimate (s) and variance ratio (F) at specified degrees of freedom (df) ${ }^{15}$. Internal validation parameters like $Q_{\text {int }}^{2}$ as well as $r_{m(L O O)}^{2}{ }^{16}$, external validation parameters like $Q_{\operatorname{ext}(F 1)}^{2}, Q_{\operatorname{ext}(F 2)}^{2}{ }^{17,18,}, r_{m(t e s t)}^{2}{ }^{16}$ and overall validation parameters $r_{m(\text { overall })}^{2}{ }^{16}$ were also reported.

External validation

The statistically internally optimized models were further evaluated for their real predictive power.
$Q_{e x t(F 1)}^{2}$ is calculated according to the following formula

$$
Q_{e x t(F 1)}^{2}=1-\frac{\sum\left(Y_{o b s}-Y_{c a l}\right)^{2}}{\sum\left(Y_{o b s}-Y_{t r a i n i n g}\right)^{2}}
$$

$Y_{\text {training }}$ Means mean activity value of the training set while $Y_{\text {obs }}$ and
$\mathrm{Y}_{\text {cal }}$ represent observed and calculated activity values.
$Q_{e x t(F 2)}^{2}$ is calculated according to the following formula

$$
Q_{e x t(F 2)}^{2}=1-\frac{\sum\left(Y_{o b s}-Y_{c a l}\right)^{2}}{\sum\left(Y_{o b s}-Y_{t e s t}\right)^{2}}
$$

$Y_{\text {test }}$ Means mean activity value of the test set.
An additional parameter which penalizes a model for large differences between observed and predicted values of the prediction set compounds, as well as independent of the mean of training and prediction set, was also calculated for model external predictivity. The expression of r_{m}^{2} is defined as:

$$
r_{m}^{2}=r^{2}\left(1-\sqrt{r^{2}-r_{0}^{2}}\right)
$$

Where r^{2} and r_{0}^{2} are determination coefficients of linear relations between the observed and predicted values of the compounds with and without intercept respectively. The r_{m}^{2} is applied for test set $\left(r_{m(\text { test })}^{2}\right)$, training set $\left(r_{m(L O O)}^{2}\right)$ and the overall set $\left(r_{m(\text { overall })}^{2}\right)$.

RESULTS AND DISCUSSION

Membership of compounds in different clusters generated using k means clustering technique is shown in Table 3. The test set size
was set to approximately 25% to the total data set size ${ }^{11}$ and the test set members along with their observed and calculated activity are given in Table 4.

Cluster	No. of compounds	Compounds (Sl nos.) in each clusters																			
1	5	1	10	1	2	13															
2	1	2																			
3	20	3	4	5	6	7	8	9	14	15	16	17	18	19	20	21	22	23	24	25	26

Table 4: Observed and calculated activity from stepwise regression model Observed activity against human DU 145 prostate cancer cell line Log(1/C)		
Sl. No.	Training Set	
	-1.50515	Calculated activity
1	-1.57978	-1.593957
2	-1.59106	-1.603138
3	-1.92942	-1.733048
4	-1.85733	-1.938343
6	-1.72428	-1.748451
7	-1.97313	-1.818671
8	-1.82607	-1.853824
10	-1.95904	-1.859090
12	-1.79239	-1.898520
13	-1.91381	-1.839970
14	-1.80618	-1.900274
15	-1.90849	-1.902685
16	-1.88649	-1.936120
18	-1.90309	-1.880813
19	-1.87506	-1.921988
20	-1.97313	-1.897568
22	-1.94448	-1.911158
23	-1.91908	-1.893506
24	-1.79239	-1.884171
26	-1.69897	-1.637508
	-1.59106	-1.6499
5	-1.89763	-1.6452
9	-1.79239	-1.89114
11	-1.89209	-1.93603
17	-1.93952	-1.88472
21		-1.89447
25		

Observed activity (ref. 9); Calculated from eq. (1)
Using stepping criteria based on F value ($F=3.5$ for inclusion; $F=3.4$ for exclusion), the best fit equation was as follows:

$$
\begin{aligned}
& \log (1 / C)=-2.295(\pm 0.146)+0.51(\pm 0.163) \mathrm{C}_{2}-3.07(\pm 0.58) \mathrm{C}_{4}-1.05(\pm 0.25) \mathrm{C}_{5} \\
& +0.43(\pm 0.17) C_{14}+6.1(\pm 1.6) C_{18} \\
& R^{2}=0.8423, R_{a}^{2}=0.786, s=0.063, \text { PRESS }=0.113, F=14.96(d f=5,14), \\
& Q_{\text {int }}^{2}=0.678, n_{\text {traininin }}=20, r_{m,(L O O)}^{2}=0.666, Q_{\text {ext(FF) }}^{2}=0.711, Q_{\text {ext }(F 2)}^{2}=0.693, \\
& \mathrm{n}_{\text {test }}=06, r_{m(\text { test })}^{2}=0.637, \mathrm{r}_{\text {m(overall) }}^{2}=0.676
\end{aligned}
$$

The standard error of the respective mulliken's charges is mentioned within parentheses. Eq. (1) could explain 78.6% of the variance (adjusted coefficient of variation) and leave - one - out predicted variance was found to be 67.8%. The positive coefficients of $\mathrm{C}_{2}, \mathrm{C}_{14}$ and C_{18} indicate that activity increases with increase in charge value of atom 2,14 and 18 respectively. The negative coefficients of C_{4} and C_{5} indicate that activity increases with decrease in charge value of atoms 4 and 5 respectively. Compounds having highest charge value at position 2 (compound 1) showing highest activity against DU145 prostrate cancer cell line. The positive coefficient of atom 14 indicates the importance of hydroxyl group necessary for activity (compound 2). It was also observed
that presence of hydroxyl group near position 14 also enhances the activity (like in compounds 5 and 9 , where hydroxyl groups are present at position 13). The positive coefficient of atom 18 indicates the importance of double bond attached pyrazole nucleus and the ester or acid group. Compound having higher charge value for position 18 possesses higher activity (like compounds 1 and 3). It was observed that presence of ester or acid group attached to double bond enhances the activity (like compounds 3 or 9). Compounds having lower charge value for position 4 showing higher activity (compounds 5 and 7 etc), where as compounds having higher charge value showing comparatively lower activity (compound 23 and 25 etc). The negative coefficient of C_{5} indicating
that compound with highest charge value showing lowest activity (compound 8). The compounds having lower value for atom 5 showing comparatively better activity (compounds 2 and 3). The statistical quality of the model showed acceptable internal validation
$\left(Q_{\mathrm{int}}^{2}=0.678 \quad\right.$ and $\left.\quad r_{m(L O O)}^{2}=0.666\right)$, external validation $\left(Q_{\text {ext }(F 1)}^{2}=0.711, Q_{\text {ext }(F 2)}^{2}=0.693, r_{m(t \text { test })}^{2}=0.637\right)$, and overall validation ($\left.\mathrm{r}_{\mathrm{m}(\text { overall })}^{2}=0.676\right)$.

OVERVIEW AND CONCLUSIONS

The whole dataset ($\mathrm{n}=26$) was divided into a training set (20 compounds) and a test set (06 compounds) based on k-means clustering of the standardized descriptor matrix and model was developed from the training set (optimized by Q^{2}). The predictive ability of the models was judged from the prediction of the activity of the test set compounds. The model indicates the importance of hydroxyl group at various position (like 13, 14 etc) of the moiety. Presence of double bond attached pyrazole nucleus and the ester or acid group is beneficial for antitumor activity. The intercorrelation among the parameters used in equations is shown in Table 5 and utmost care was exercised to avoid collinearities among the variables. There are diversity in the structures among pyrazole compounds and the structural difference in each compound result from the variation in the aryl substituted groups at position 1 and 3 of the pyrazole structural motif and various functional groups at position 4. These structural variations are responsible for changes in mulliken's charges of the common atoms of various compounds. So the mulliken's charges can be projected as a useful tool in the context of QSAR studies.
Table 5: Intercorrelation among descriptors used in the model from stepwise analysis.

	$\mathbf{C}_{\mathbf{2}}$	$\mathbf{C}_{\mathbf{4}}$	$\mathbf{C}_{\mathbf{5}}$	$\mathbf{C}_{\mathbf{1 4}}$	$\mathbf{C}_{\mathbf{1 8}}$
$\mathbf{C}_{\mathbf{2}}$	1.000	-.360	.049	.015	-.029
$\mathbf{C}_{\mathbf{4}}$	-.360	1.000	-.350	-.316	.534
$\mathbf{C}_{\mathbf{5}}$.049	-.350	1.000	.512	-.169
$\mathbf{C}_{\mathbf{1 4}}$.015	-.316	.512	1.000	-.249
$\mathbf{C}_{\mathbf{1 8}}$	-.029	.534	-.169	-.249	1.000

REFERENCES

1. Elguero J. Pyrazoles. In Katritzky AR, Rees CW, Scriven EFV, editors. Comprehensive Heterocyclic Chemistry II. Oxford: Elsevier Science Ltd; 1996. p 1-75.
2. Varvounis G, Fiamegos Y, Pilidis G. Pyrazol-3-ones. Part III: reactivity of the ring substituents. Adv Heterocycl Chem 2001; 80: 75-165.
3. Yamamoto S, Tomita N, Suzuki Y, Suzaki T, Kaku T, Hara T, Yamaoka M, Kanzaki N, Hasuoka A, Baba A, Ito M. Design, synthesis, and biological evaluation of 4-arylmethyl-1phenylpyrazole and 4-aryloxy-1-phenylpyrazole derivatives as novel androgen receptor antagonists. Bioorg Med Chem 2012; 20: 2338-2352.
4. Zhang D, Wang G, Zhao G, Xu W, Huo L. Synthesis and cytotoxic activity of novel 3-(1H-indol-3-yl)-1H-pyrazole-5-carbohydrazide derivatives. Eur J Med Chem 2011; 46: 5868-5877.
5. Lv PC, Li HQ, Sun J, Zhou Y, Zhu HL. Synthesis and biological evaluation of pyrazole derivatives containing thiourea skeleton as anticancer agents. Bioorg Med Chem 2010; 18: 4606-4614.
6. Vujasinovic I, Paravic-Radicevic A, Mlinaric-Majerski K, Brajsa K, Bertosa B. Synthesis and biological validation of novel pyrazole derivatives with anticancer activity guided by 3D-QSAR analysis. Bioorg Med Chem 2012; 20: 21012110.
7. Elgazwy AS. Three-dimensional quantitative structure activity relationship (QSAR) of cytotoxic active 3, 5-diaryl-4,5-dihydropyrazole analogs: a comparative molecular
field analysis (CoMFA) revisited study. Chem Cent J 2012; 6: 50.
8. Li CY, Li QS, Yan L, Sun XG, Wei R, Gong HB, Zhu HL. Synthesis, biological evaluation and 3D-QSAR studies of novel 4, 5-dihydro-1H-pyrazole niacinamide derivatives as BRAF inhibitors. Bioorg Med Chem 2012; 20: 37463755.
9. Christodoulou MS, Fokialakis N, Nam S, Jove R, Skaltsounisc AL, Haroutouniana SA. Synthesis and In Vitro Biological Evaluation of Novel Pyrazole Derivatives as Potential Antitumor Agents. Med Chem 2012; 8: 779-788.
10. CS ChemOffice is software of CambridgeSoft Corporation, USA.
11. Leonard JT, Roy K. On Selection of Training and Test Sets for the Development of Predictive QSAR models. QSAR \& Comb Sci 2006; 25: 235-251.
12. MINITAB is statistical software of Minitab Inc, USA, www.minitab.com.
13. STATISTICA is a statistical software of Stat Soft Inc, www.statsoft.com
14. Darlington RB. Regression and linear models. New York: McGraw Hill; 1990.
15. Snedecor, G.W.; Cochran, W.G. Statistical Methods, Oxford \& IBH Publishing Co. Pvt. Ltd.: New Delhi, 1967.
16. Roy PP, Roy K. On some aspects of variable selection for partial least squares regression models. QSAR \& Comb Sci 2008; 27: 302-313.
17. Hawkins DM. The problem of overfitting. J Chem Inf Comp Sci 2004; 44, 1-12.
18. Schuurmann G, Ebert RU, Chen J, Wang B, Kuhne R. External validation and prediction employing the predictive squared correlation coefficient-test set activity mean vs training set activity mean. J Chem Inf Model 2008; 48, 2140-2145
