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ABSTRACT 

Presenilins are multipass transmembrane proteins which are expressed in many tissues, including brain and they appear to be membrane bound 
and primarily expressed in endoplasmic reticulum. Ps1 and ps2 genes encode for 46 and 55KDa proteins.  Numerous misense mutations in 
presenilins are associated with neurodegenerative disorders, a condition related both heart and brain may experience.  β-catenin associated with 
partner proteins  to regulate its cytoplasmic level. Ps1 is a member of partner proteins and involved in the regulation of β-catenin signal as well as 
other proteins.  This β-catenin signal is connected with onset of familial alzheimers disease. Presenilin have a role in notch pathway so presenilin 
can  also be targeted  notch receptor.  Alzheimers disease is transmitted as an autosomal dominant disorder and is characterized by an age onset.  
Mutations in ps1 and ps2 of these genes cause in 5-10% of cases of FAD. Ps2 homolog of ps1,reduces level of cytoplasmic β-catenin and inhibits β-
catenin  t-cell factor regulated transcription. These results indicate that ps1 plays a role as inhibitor of β-catenin signal which is connected with AD 
dysfunction.  The finding of ps2 in heart and responsiveness to low glucose and hypoxia suggests that ps2 can be regulated by conditions of 
ischemia.  This article reveals about the presenilin gene is a physiological importance in various neurogenerative disorders. 
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INTRODUCTION   

Presenilin genes encode polytopic transmembrane proteins, with 
eight transmembrane domains and a large cytoplasmic loop1-2,which 
are processed by proteolytic cleavage and form high molecular 
weight complex3 under physiological conditions. It has been 
involved in developmental morphogenesis, unfolded  protein 
response & processing of selected  proteins  including β-APP. 

Types of presenilins 

PS1 and PS2 are 467 and 448 amino acid polypeptides4.  

Source of  presenilin 

Presenilins are initially located to endoplasmic reticulum and golgi 
compartments, but very recent work suggests a much wider 
localization other intracellular compartments with a small pool 
present at plasma membrane5-6. Ps 1 is being in many  tissues ,both 
within CNS and in non-neuronal organs7-8. PS is maximally expressed 
in cardiac muscle, Skeletal muscle and pancreas1. PS is most 
abundant is dendrites of neurons8. 

Characteristic features of presenilins 

Very low levels of haloproteins  are detected in un-transfected cells 
and tissues. the major form existing in cells are the 
endoproteolytically derived N and C-terminal fragments. The half 
life of the haloprotein in brief (30-60min) and they undergo distinct 
phosphorylation4. Halo protein is actively catabolised possibly by at 
least two different proteolytic mechanisms. First mechanism 
Proteasome9 ,second involves a series of heterogeneous 
Endoproteolytics cleavages near residue within loop domain by 
presenilins. This presenilins generates N&C-terminal fragments 
approximately 35 and 20kDa respectively10-11.a)Intramembrane 
proteases b)Cleave substrates within their transmembrane 
domains12.All intracellular proteases are conserved polytopic 
membrane proteins contains catalytic residues within the 
transmembrane domains13. Transmembrane domains include three 
families: a.presenilin type aspartyl proteases including presenilin 
dependent γ-secretase and   signal peptide peptidase that is 
essential for generation of signal peptide derived HLA-E epitope in 
humans.17-21.b.Site2-protease family zinc metalloprotease that cleave 
and activate sterol regulatory element binding proteins 22.c.The 
rhomboid serine proteases that use a catalytic triad to cleave 
transmembrane ligand substrate such as EGF ligand23-24. Presenilins 
have conserved aspartyl residue a feature of aspartyl proteases 
within PS transemenbrane domain 6&7 required for production 
amyloid β protein. Aspartyl protease transition state analog 
inhibitor directly bind PS1 and PS2 and serve as the active site of  

 

multi-component enzyme25-26. Ps 1 and PS2 genes encode 46 and 
55KDA proteins respectively about 80% homologous with eight 
transmembrane domains and a large hydrophilic loop facing to the 
cytoplasm27. They undergo endo-proteolysis within loop domain and 
resultant 30 kda N-terminal and 20 kda C-terminal fragments 
associate with each other in stable heteromeric components of a 
larger multimeric protein complex that appears as resident in 
endoplasmic reticulum, golgi complex 28. The incorporation of PS 
proteins into a larger complex represents a rate limiting step in PS 
processing pathway, thus nce incorporated the endoproteolytic 
fragments remain together with a stable 1:1 stoichiometry and very 
long half-lives.  Haloproteins monomers are fail to get incorporate 
into these complexes are rapidly degraded with half live of less than 
1 hour via a proteosome dependent  mechanism29-30. 

Functions of  Presenilins 

1. PS1  role in protein and membrane trafficking31. 
2. Ablation of functional PS, expression causes aberrant processing 

of the β-APP  with the failure of γ-secretase cleavage which 
results in accumulation of uncleaved α-secretasem, β-secretase 
stubs in a variety of intracellular loci including 
ER,Golgi,Lysosomes32-33. 

3. PS deficiency alters trafficking of proteolytic fragments of APP 
and APLP to subcellular compartments which contains γ-
secretase and the PS play a direct role in APP processing  by γ-
secretase34. 

4. Other  functions for PS1 include roles in regulation of signal 
transduction during development in apoptosis and in cellular 
calcium ion hemostasis 

5. PSS is  regulator of the unfolded protein response35-36 
6. Ps2 plays a  role in cellular apoptosis37-38. 
7. Presenilins has an important role in neuronal development and              

regulating neuronal survival. 
8. PS has potential role of presenilins in cell cycle and chromosome 

segregation39. 
Presenilin  in  alzheimer’s disease. 

Alzheimer’s disease. 

AD is a age related neurodegenerative disorder that arises when 
neurons in certain regions of the brain particularly those involved in 
memory, cognition are damaged and ultimately killed, probably as a 
consequence of abnormal production of amyloidogenic Aβ 
peptides40.  The two abnormal microscopic structures called 
neurofibrillary tangles & senile plaques as the hall marks of AD41. 
Neurofibrillary tangles consist of aberrantly phosphorylated 
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fibrillary proteins aggregated within neuronal cytoplasm. Their 
presence signifies failure of the neuron to properly maintain its 
cytoskeleton, which is required to support the extraordinarily 
complex branching shape of its numerous processes. The 
development of tangles is a major & possibly the main mechanism is 
neuronal death in AD42.  Senile plaques are more complex, & consists 
of extracellular deposits of amyloid material and are associated with 
swollen, distorted neuronal processes called dystrophic 
neuritis.Plaques start as innoculous deposits of non- aggregated 
putatively non-neuronal β-amyloid (diffuse plaques).  Complex sugar 
polymer components(glycosamine glycans)are thought to be crucial 
in the assembly of these deposits. Alzheimers begin to damage the 
brain years befpre symptoms emerge , nerve cells that process, store 
& retrieve information have already begun to degenerate & die43-45. 

Symptoms of alzheimers disease. 

1. Memory changes  that disrupt daily life . 

2. Challenges in planning  or solving problems . 

3. Difficulty completing familiar tasks . 

4. Confusion to time & place . 

5. Trouble understanding visual images and spatial 
relationships. 

6. Misplacing things & losing abilty to retrace steps  

7. New problems with words in speaking or writing . 

8. Decreased or poor judgement . 

9. With drawal from work or social activities. 

10. Changes in mood & personality41. 

Role of presenilins in alzheimers disease. 

Several point mutations in the gene coding for the novel proteins 
presenilin-1 β-app on chromosome 21 are sufficient to cause early 
on set autosomal familial dominantly inherited AD. Some mutations 
increase the production of β-amyloid  while ,other favours the 
formation of long (42 Amino acids)forms of β-amyloid ,which 
aggregate more readily than (40 A.A) short forms46.  The interaction 
of presenilins &β-app in the neuronal cell body is critical for 
organizing vesicular traffic. When this process interrupted  the 
delivery of synaptic vesicles to pre synaptic terminals is impaired & 
neurotransmitter deficit may exceed neuronal loss47-49.A common 
genetic polymorphism affecting gene for apolipoprotein E is firmly 
established as the major risk factor for the development of AD.This 
lipoprotein is involved in synaptic repair particularly in response to 
tissue injury .It has an important role in maintenance of neuronal 
structure & cholinergic function 50-51. The marked increment in risk 
produced by single amino acid difference in the APOE –allelic 
protein makes  it a potentially attractive therapeutic target.  
Autosomal genetic risk factors currently being investigated include a 
susceptibility locus on chromosome 12 , polymorphism of the very 
low density lipo-protein  receptor genes as well as an intron 
mutation of presenilin gene52-54 .The report that the HLA-A2 allele is  
assoiated  with an earlier age on set suggests modulation of 
inflammation plays a role in development of disease.  In addition, 
reported mutations in the mitochondrial genome, which can either 
be inherited or acquired, would contribute to oxidative damage 
plays a central role for development of AD55-56. 

Presenilin with partner protein   β -catenin 

β-catenin was detected in peripheral and interior cytoplasm. Co-
localisation of ps1 and ß-catenin observed in ER and the proximity 
of plasma membrane57-58.  Ps1 is membrane fraction indicate lower 
activity of proteolytic cleavage. anti β-catenin antibody indicated the 
presence of endogenous β-catenin in both cytoplasm and membrane 
fractions .these proteins associated with each other during immuno 
precipitation. Membrane associated β-catenin involved in cell 
adhesion and its soluble form in t-cell factor(Tcf) regulated 
transcription. Ps1 significantly reduced CRT(β-catenin response 
transcription) activity. CRT activity is regulated by the level of 

cytoplasmic β-catenin. The inhibition of cytoplasmic β-catenin by 
ps1 expression was restored by lithium chloride treatment known as 
an inhibitor of glycogen synthase kinase-3β( GSK -3β). PS-1,GSK-
3β,β-catenin complex inhibits the β-catenin signaling cascade. PS-1 
has ablity to bind gsk-3beta and mutant PS-1 facilitates 
phosphorylation of tau by GSK-3ß59. β-catenin is known to associate 
with partner proteins APC(The adenomatous polyposis cell)60 to 
regulate it’s cytoplasm level.The β-catenin signal may be tightly 
regulated by these partner proteins in response to extracellular 
stimuli. Ps1 is a member of these partner proteins. β-catenin signal 
may be connected with onset of alzheimers disease. Alternatively 
ps1 may interact with other proteins and induce neuronal death 
with formation of amyloid plaques and neuro fibrillary tangles61-62. 

β-catenin sigalling pathway 

  Formation of ps1: β-catenin complex lead to increased stability of 
β-catenin pathogenic mutant ps1 loses this stablistion effect and 
cause suppression of β-catenin signal63.                       

Role of presenilins in heart failure  

Under pathalogical conditions of heart failure, a lack of nutrients and 
oxygen flow to heart and would up regulate the ps2 expression and 
increase in ps  levels64. The ps2 interact with at least three calcium 
binding proteins: calsenilin67, calmynin65, sorcin 66. this sorcin serve 
as a modulator af the ryanodine receptor intracellular calcium 
channel. Cardiac rynodine receptor(r4r2) is the major sarcoplasmic 
reticulum calcium release channel in heart(68). Altered regulation of 
(r4r2) is the mechanism underlying a loss of cardiac excitation 
contraction coupling gain and arrhythmias. Treatment of cells with 
calcium ionophore does not alter the steady levels of sorcin or ps-
2,but increases the binding between sorcin and PS-266. By 
understanding these important mechanisms might provide a better 
treatment for heart failure. Ps2 responds to conditions of low 
glucose and low oxygen by up regulated expression ad responds to 
ischemia conditions which link the heart and brain 
pathophysiology69. 

Presenilin with notch receptor in cell fate 

Notch receptor family includes 4 members in mammalians that are 
all anchored in the cell membranes as heterodimers and involved in 
cell-fate decision , patterning & cell polarity70. Notch ligands those of 
serrate or delta family, also contain a transmembrane domain and 
are anchored in the cell membranes.  Notch signaling, resulting in 
expression of target genes via downstream transcription of observed 
CSL(c-promoter binding factor-1/suppressor of hair less/LAG-2) 
protein family71-72.Proteolytic cleavage of notch &nuclear 
translocation of its intracellular domain has been considered to be 
crucial step in transduction of signal73-74. Presenilins have a role in 
notch pathway and required for intramembraneous  notch 
proteolysis. Lacking ps1 activity, there is a dramatic reduction  in 
notch -1 signalling fragment  derived from intra membranes γ-
secretase  like cleavage of the notch-1 receptor, and a similar loss of  
APP γ- secretase cleavage also seen in these mammalian cells75-82. 
The ps proteins cleave the notch receptors at cell surface in a ligand-
dependant manner is difficult to reconcile with the predominant 
localization of PS in intracellular ER,& GOLGI associated 
compartments and may facilitate notch &APP trafficking to cell 
surface83. First cleavage occurs in trans-golgi compartment and is 
performed by furin class serine proteases resulting the formation of 
notch heterodimer consisting of non-covalently associated 
extracellular and transmembrane fragments84-86. Ligand binding, 
second cleavage occurs just outside the transmembrane domains. 
Here ADAM protease cleaves notch ligand and that heterodimer 
dissociation & receptor  inactivation may be triggered by reduced 
levels of extracellular calcium87, therefore removal of notch extra 
cellular domain , and it is to be crucial step in ligand & induced 
activation of notch .this step apparently  depends upon the 
endocytosis of notch88-90. Once the extracellular domain of notch has 
been removed,the remaining carboxy-terminal portion consisting of  
a short extracellular stalk,the transmembrane domain & complete 
extracellular domain is efficiently proteolysed  in a presenilin 
dependent manner. Like removal of ectodomain of notch, the β-
cleavage of APP generates a membrane anchored carboxy-terminal 
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derivative that may serve as an optimal substrate for 
intramembraneous ps-mediated proteolysis, providing a rational 
explanation for the involvement of PS- proteins in both notch 
&APP90. 

CONCLUSION 

 Presenilin is a novel gene, which is proteinaceous in nature, 
undergo mutations which increases the production of β-amyloid and 
account for majority of diseases viz, early onset of inherited AD, 
heart failure, CNS disorders etc. These type of physiological 
disorders which need  chronic drug treatment. The future trend in 
medicine purely depend upon gene therapeutics, by  targeting  
misleading  gene encoding , disorders can be cured permanently 
without any side effects. Presenilin is a gene by targeting, we can 
treat number of physiological disorders. 
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