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ABSTRACT 

This study gives a quantitative structure activity relationship (QSAR) correlation of aldose reductase inhibitory activity of seventy flavonoid 
compounds. The study was performed using electrotopological state atom (E-state) parameter as descriptors. Partial least squares analysis (PLS) is 
used as chemometric tool. The model indicates the importance of hydroxyl group at various positions of the flavonoid moiety.  Presence of methoxy 
groups attached to the moiety at specific positions is beneficial for aldose reductase inhibitory activity. 
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INTRODUCTION   

Aldose reductase (AR) plays an important role in cataract formation 
which is produced in diabetic patients due to over expression of 
aldose reductase. Normally in presence of reduced nicotinamide-
adenine-dinuclotide phosphate (NADPH) as cofactor, the enzyme 
reduces aldose sugar to their alcohol as exemplified by glucose to 
sorbitol and sorbitol dehydrogenase, oxidizes sorbitol to fructose 1, 2. 
But in diabetic condition the balance between sorbitol production 
and conversion of sorbitol to fructose is disturbed. Excess of sorbitol 
is produced which accumulated in lens, nerve and retina provokes a 
hyper-osmotic effect causing lens swelling and opacities that 
ultimate leads to cataract formation 3. 

Flavonoids are a group of naturally occurring polyphenolic 
compounds ubiquitously found in fruits and vegetables 4-6. 
Chemically flavonoids are benzo-γ-pyrone derivatives. Common 
family members of flavonoids include flavones, flavonols, flavanones, 
isoflavones, biflavanones, catechins and anthocyanidins. Structural 
diversity of flavonoids allows them to exhibit antineoplastic, 
antihepatitis, antibacterial, anti-inflammatory, antimutagenic, 
antiallergic, antithrombic, antiviral and vasodilatory activities 7-9. 
The potent antioxidant activity of flavonoids, their ability to 
scavenge hydroxyl radicals, superoxide anions and lipid peroxy 
radicals could be the most important function of flavonoids and 
underlie many of the above processes in the body 10. 

The inhibitory effect of aldose reductase was found in several 
structurally diverse classes of compounds like 
tetramethyleneglutaric acid, flavone coumarin, xanthine, 
naphthalene, flavone, quinazoline derivatives etc 11-14. But flavonoids 
derivatives were found to be more potent. A quantitative structure–
activity relationship (QSAR) study on a data set of inhibitory 
activities against AR enzyme of 75 flavonoids was reported using 
multi linear regression analysis with classical and quantum chemical 
descriptors was reported 15. Another study was performed using 
several types of descriptors using artificial neural network as 
chemometric tool 16. In the present work we have modeled the 
aldose reductase inhibitory activity of 70 flavonoids 17-19 compounds 
using electrotopological state atom (E-state) parameters by partial 
least squares. 

MATERIALS AND METHODS 

Electrotopological state atom (E-state) index 

Structural specificity of a drug molecule is exhibited at an atomic or 
fragmental level instead of the whole molecule. In the drug receptor 
interaction phenomenon, a portion of the molecule 
(pharmacophore) may play more important role than the other 
segments. Though basic information for constitution of topological 
indices are derived from the atom level (count of atoms, bonds, 
paths of bonds, etc.), most of the indices are applied to the whole 
molecule after summing up all components over the whole molecule.  

 

Thus QSAR studies at the atomic or fragmental level are justified in 
the present context 20. 

The electrotopological state atom (E-state) index developed by Hall 
and Kier 21 is an atom level descriptor encoding both the electronic 
character and topological environment of each skeletal atom in a 
molecule. The E-state of a skeletal atom is formulated as an intrinsic 
value Ii plus a perturbation term Ii, arising from the electronic 
interaction within the molecular topological environment of each 
atom in the molecule.  

The intrinsic value has been defined as the ratio of a measure of 
electronic state (Kier-Hall valence state electronegativity) to the 
local connectedness. The count of valence electrons which are the 
most reactive and involved in chemical reactions and bond 
formations are considered in the expression of I to encode the 
electronic feature. To reflect differences in electronegativity among 
the atoms, principal quantum number is employed in the expression 
of I. The topological attribute is included by using adjacency count of 
atom. The intrinsic value of an atom i is defined as  
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In Eq. (i), N stands for principal quantum number and v and 
indicate the count of valence electrons and sigma electrons 
associated with the atom i in the hydrogen suppressed graph. The 
intrinsic electrotopological state calculated according to Eq. (i) 
produces different values of an atom in different degrees of 
substitution (branching). The values are also different for different 
atoms having differences in electronegativity. The intrinsic values 
increase with increase in electronegativity or electron-richness and 
decrease with increase in branching (substitution). 

The perturbation factor for the intrinsic state of atom i is defined as  
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In Eq. (ii) 
ijr stands for the graph separation factor, i.e., count of 

skeletal atoms in the shortest path connecting the atoms i and j 
including both atoms. 

Summation of intrinsic state of an atom and influence of the field is 
called electrotopological state of the atom. 

i i ij
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                                                           (iii) 

It is a representation of molecular structure information as it varies 
with changes in structural features including branching, cyclicity, 
homologation, heteroatom variation, and changes in relative 
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positions of different groups. The electrotopological state considers 
both bonded and non-bonded interactions: the bonded component 
depends simply on differences in electronegativity among the 
adjacent atoms. The non-bonded interactions may be through 
inductive effect across the skeleton and is a function of graph 
separation factor and electronegativity differences. Thus, 
electrotopological state represents electronic distribution 
information modified by both local and global topology. The 
information encoded in the E-state value for an atom is the 
electronic accessibility at that atom. 

Data treatment and software 

The inhibitory effects of flavonoid compounds against aldose 
reductase reported in literatures 17-19 were used as the model data-

set for the present QSAR analysis (Table 1). The reported activity 
[log (1/IC50) was used for QSAR analysis. The QSAR analysis was 
performed using electrotopological state atom (E-state) parameter. 
The whole data set seventy compounds and all the compounds 
contain 17 common atoms (excluding hydrogen). The atoms of the 
molecules were numbered keeping serial numbers of the common 
atoms same in all the compounds (as shown in Figure 1). The 
electrotopological states of the 17 common atoms for all of the 
compounds were found out using a VISUAL BASIC program SRETSA 
developed partly by the author 22. The program uses, as input, only 
the connection table in a specific format along with intrinsic state 
values of different atoms. To the output file thus obtained, the 
biological activity data were introduced to make it ready for 
subsequent regression analysis. 

Table 1: Molecular scaffolds of the compounds along with their activity 

O

O

R1

R2

R3

R4

R5

R6

R7

R8

R9

 

Sl No R1 R2 R3 R4 R5 R6 R7 R8 R9 Log 1/IC50 
1 -OCH3 -OH -OCH3 -OH H H -OH -OH H 7.52 
2 H -OCH3 -OCH3 -OCH3 -OCH3 H -OH -OH H 7.49 
3 H -OCH3 -OH -OCH3 -OCH3 H -OH -OH H 7.47 
4 H -OH -OCH3 -OH -CH2Ph H -OH -OH H 7.47 
5 H -OH -OCH3 -OCH3 -OCH3 H -OH -OH H 7.41 
6 H -OCH3 H -OCH3 -OCH3 H -OH -OH H 7.35 
7 -OCH3 -OH -OH -OH H H -OH -OH H 7.24 
8 H -OH -OH -OCH3 -OCH3 H -OH -OH H 7.19 
9 H -OCH3 H -OH -OCH3 H -OH -OH H 7.13 
10 H -OH H -OCH3 -OCH3 H -OH -OH H 7.11 
11 H -OCH3 -OCH3 -OCH3 H H -OH -OH H 7.04 
12 H -OH -OH -OH -OCH3 H -OH -OH H 6.92 
13 H -OCH3 -OH -OCH3 H H -OH -OH H 6.85 
14 H -OCH3 -OCH3 -OCH3 -OCH3 H H -OH H 6.79 
15 H -OCH3 H -OCH3 OH H -OH -OH H 6.79 
16 -OCH3 -OCH3 H -OCH3 -OCH3 H -OH -OH H 6.77 
17 H -OH -OH -OH H H -OH -OH H 6.69 
18 H -OH -OCH3 -OCH3 H H -OH -OH H 6.66 
19 H -OH H -OCH3 -OH H -OH -OH H 6.64 
20 -OCH3 -OH H -OH -OCH3 H -OH -OH H 6.62 
21 H -OCH3 -OH -OCH3 -OCH3 H H -OH H 6.6 
22 H -OCH3 -OCH3 -OCH3 H H -OH -OH H 6.57 
23 H -OH H -OH -OCH3 H -OH -OH H 6.55 
24 -OCH3 -OCH3 H -OH -OCH3 H -OH -OH H 6.55 
25 H -OCOCH3 -OCOCH3 --OCOCH3 -OCH3 H -OCOCH3 -OCOCH3 H 6.52 
26 H -OH -OH -OCH3 H H -OH -OH H 6.52 
27 -OCH3 -OCH3 -OH -OCH3 H H -OH -OH H 6.52 
28 -OCH3 -OH -OCH3 -OCH3 H H -OH -OH H 6.46 
29 H -OH -OCH3 -OH -OCH3 H H -OH H 6.39 
30 H -OH -OCH3 -OCH3 -OCH3 H H -OH H 6.27 
31 -OCH3 -OH -OH -OCH3 H H -OH -OH H 6.09 
32 -OH -OH H -OH H H -OH -OH H 6.09 
33 H -OH -OH -OCH3 -OCH3 H H -OH H 6.07 
34 H -OH -OH -OH -OCH3 H H -OH H 5.92 
35 H -OH -OH -OH -OCH3 H -OCH3 -OH H 5.92 
36 H -OH -OCH3 -OCH3 H H H -OH H 5.85 
37 -O-Rh -OH H -OH H H -OH -OH H 5.69 
38 H -OH -OCH3 -OH -OCH3 H -OCH3 -OH H 5.35 
39 H -OCH3 -OH -OCH3 -OCH3 H -OCH3 -OH H 5.2 
40 H -OH -OCH3 -OCH3 H H -OCH3 -OH H 5.17 
41 H -OH -OCH3 -OH -OCH3 H H -OCH3 H 5.14 
42 H -OH -OH -OH -OCH3 H H H H 5.09 
43 H -OH -OH -OCH3 -OCH3 H H H H 5.08 
44 -COCH3 -OCH3 -OCH3 -OCH3 H H -OH -OH H 5.05 
45 H -OH -OCH3 -OCH3 H H -OH -O-Glc H 5.02 
46 H H H H H H H -OH H 5 
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47 H -OH -OCH3 -OCH3 H H -OCH3 -O-Glc H 4.92 
48 H -OH -OCH3 -OCH3 H H H -O-Glc H 4.88 
49 -O-Glc -OH H -OH H H -OH -OH H 4.79 
50 H -OH -OCH3 -OH -OCH3 H -OCH3 -O-Glc H 4.78 
51 H -OCH3 -OCH3 -OCH3 -OCH3 H -OCH3 -OH H 4.74 
52 H -OH -OCH3 -O-Glc -OCH3 H -OCH3 -OH H 4.73 
53 -Ph H H -OCH3 H H H -OH H 4.68 
54 H -OH -OCH3 -OH -OCH3 H -OCH3 -OCH3 H 4.67 
55 -Ph H H H H H H -OH H 4.53 
56 -OH H -OCH3 H H H H H H 4.48 
57 -CN H H H H H H H H 4.48 
58 -COOH H H H H H H H H 4.48 
59 H -OH -OCH3 -OCH3 -OCH3 H -OCH3 -OH H 4.42 
60 -OH H H H H H H H H 4.34 
61 -COOH -OCH3 H H -COOH H H H H 4.34 
62 -OCH3 H H -OCH3 H H H -OH H 4.25 
63 H H H -OCH3 H H H -OH H 4.15 
64 -OH -OH H -OH H H -OCH3 -OH H 4 
65 H H H H H H H -OH H 4 
66 -CH3 H H H H H H -OH H 4 
67 H -OCH3 -OH -OCH3 -OCH3 H H H H 3.54 
68 H -OH H -OCH3 H -OCH3 H -OCH3 OH 3.5 
69 H -OCH3 H -OH H H H H H 3 
70 H -OH H -OCH3 H -OCH3 H -OH -OCH3 3 

Glc=glucose; Rh=rhamnose 
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Figure 1: Common atom of the compounds 

Model development 

To begin the model development process, the whole data set (n=70) 
was divided into training (n=53, 75% of the total number of 
compounds) and test (n=17, 25% of the total number of compounds) 
sets by k-means clustering technique 23 applied on standardized 
descriptor matrix of the E-state parameters. QSAR models were 
developed using the training set compounds (optimized by Q2), and 
then the developed models were validated (externally) using the test 
set compounds.  

PLS 

PLS is a generalization of regression, which can handle data with 
strongly correlated and/or noisy or numerous X variables 24, 25. It 
gives a reduced solution, which is statistically more robust than 
MLR. The linear PLS model finds “new variables” (latent variables or 
X scores) which are linear combinations of the original variables. To 
avoid over fitting, a strict test for the significance of each consecutive 
PLS component is necessary and then stopping when the 
components are non significant. Application of PLS thus allows the 
construction of larger QSAR equations while still avoiding over 
fitting and eliminating most variables. PLS is normally used in 
combination with cross validation to obtain the optimum number of 
components. This ensures that the QSAR equations are selected 
based on their ability to predict the data rather than to fit the data. 
In case of PLS analysis on the present data set, based on the 
standardized regression coefficients, the variables with smaller 
coefficients were removed from the PLS regression until there was 
no further improvement in Q2 value irrespective of the components. 
The PLS analysis was performed using statistical software MINITAB 
26. 

Statistical parameters 

The statistical qualities of various equations were judged by 
calculating several metrics namely squared correlation variance 
(R2), explained variance (Ra2), standard error of estimate (s) and 

variance ratio (F) at specified degrees of freedom (df) 27. Internal 
validation parameters like 2

intQ  as well as 2

( )m LOOr  28, external 

validation parameters like 2

( 1)ext FQ , 2

( 2)ext FQ  29, 30, 2

( )m testr  28 and overall 

validation parameters 2

( )m overallr
28 were also reported. 

External validation  

The statistically internally optimized models were further evaluated 
for their real predictive power.  

2

( 1)ext FQ  is calculated according to the following formula 

2

2
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trainingY Means mean activity value of the training set while Yobs and 

Ycal represent observed and calculated activity values. 

2

( 2)ext FQ  is calculated according to the following formula 
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testY  Means mean activity value of the test set.  

An additional parameter which penalizes a model for large 
differences between observed and predicted values of the prediction 
set compounds, as well as independent of the mean of training and 
prediction set, was also calculated for model external predictivity. 

The expression of 2

mr  is defined as: 
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2 2 2 2

0(1 )mr r r r    

Where 2r  and 2

0r
 are determination coefficients of linear relations 

between the observed and predicted values of the compounds with 
and without intercept respectively. The 2

mr
  is applied for test set (

2

( )m testr ), training set ( 2

( )m LOOr ) and the overall set ( 2

( )m overallr ).  

RESULTS AND DISCUSSION 

Membership of compounds in different clusters generated using k-
means clustering technique is shown in Table 2. The test set size was 
set to approximately 25% to the total data set size 23 and the test set 
members along with their observed and calculated activity are given 
in Table 3.  

Table 2: k-Means clustering of compounds using standardized descriptors 

Cluster 
No. 

No. of 
compounds 
in different 

clusters 

Compounds (Sl nos.) in each clusters 

1 10 1 6 24 36 37 50 54 57 11 41        
2 11 4 7 12 31 32 52 56 60 8 38 62       
3 7 18 19 63 64 65 55 66           
4 17 16 22 30 33 34 43 44 45 49 51 59 69 70 27 40 47 61 
5 13 14 21 28 29 35 42 46 48 58 67 25 39 53     
6 12 2 3 9 10 13 17 20 23 68 5 15 26      

Table 3: Observed and calculated activity from PLS model 

Sl. No. 

Observed aldose reductase 
inhibitory activity 

Log(1/IC50) 
Calculated activity 

 
Training Set 

1 7.52 5.28975 
2 7.49 6.80282 
3 7.47 6.94836 
4 7.47 6.49323 
6 7.35 6.49937 
7 7.24 6.57391 
9 7.13 6.56609 

10 7.11 6.29316 
12 6.92 6.99172 
13 6.85 6.54434 
14 6.79 5.77346 
16 6.77 5.16328 
17 6.69 6.57344 
18 6.66 6.25748 
19 6.64 6.45781 
20 6.62 6.42411 
21 6.6 5.9688 
22 6.57 6.40654 
23 6.55 6.2783 
24 6.55 7.10528 
28 6.46 6.32939 
29 6.39 5.82561 
30 6.27 5.67988 
31 6.09 6.52929 
32 6.09 6.135 
33 6.07 5.78518 
34 5.92 6.118 
35 5.92 5.5064 
36 5.85 5.22491 
37 5.69 6.18206 
42 5.09 4.45446 
43 5.08 4.25352 
44 5.05 6.61885 
45 5.02 5.80204 
46 5 4.09677 
48 4.88 4.55601 
49 4.79 4.76661 
50 4.78 5.98351 
51 4.74 6.57025 
52 4.73 6.26274 
54 4.67 5.98823 
56 4.48 5.08061 
57 4.48 4.38442 
58 4.48 4.58927 
59 4.42 6.29257 
60 4.34 4.46052 
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63 4.15 4.14434 
64 4 5.89769 
65 4 4.14508 
67 3.54 4.79935 
68 3.5 3.27716 
69 3 4.01685 
70 3 4.18694 

Test Set 
5 7.41 6.653537 
8 7.19 6.850522 

11 7.04 6.478228 
15 6.79 6.60105 
25 6.52 6.792135 
26 6.52 6.432422 
27 6.52 6.704153 
38 5.35 6.140019 
39 5.2 6.580494 
40 5.17 5.843587 
41 5.14 5.29672 
47 4.92 5.220972 
53 4.68 4.016358 
55 4.53 4.103405 
61 4.34 4.595067 
62 4.25 4.29963 
66 4 4.150476 

Observed activity from ref (17, 18 & 19) 
Calculated activity from eq. (1) 

The number of optimum components was 3 to obtain the final 
equation (optimized by cross validation). Based on the standardized 
regression coefficients, the following variables were selected for the 
final equation: 

50 1 3 4 5

14 15 16 17

2 2

2 2 2

int ( ) ( 1)

log(1/ )  9.3098-0.2586S -0.4081S +0.547S 0.4325

0.2868 0.727 1.3756 3.0245

0.594, 0.569, 40.96, 23.9( 3,52),

0.5078, =53, 0.487, =0.7626, 

a

training m LOO ext F

IC S

S C S S

R R PRESS F df

Q n r Q Q

 

   

    

  2

( 2)

2 2

test ( ) m(overall)

=0.7620, 

n 17,  =0.7269, r 0.535

ext F

m testr 

(1) 

Eq. (1) could explain 56.9% of the variance (adjusted coefficient of 
variation) and leave – one – out predicted variance was found to be 
50.78%.   

The positive coefficient of S4, S5 and S16 indicates that aldose 
reductase inhibitory activity increases with increase in E-state value 
of atom 4, 5 and 16 respectively. Compounds with high values of E-
state parameter for atom 4 (S4) (like 65, 63 and 55) showed 
comparatively higher activity. Position 4 indicates the importance of 
hydroxyl / methoxy group necessary for activity.  The higher value 
of E-state shows higher activity (like in compounds 65 and 63) than 
compounds (like 1 and 7) having lower value of E-state for atom 5 
(S5).  Higher active compounds (like 63, 65 and 69) possessing 
higher E state value indicate that no substitution is required for 
position 16.   

The negative coefficients of S1, S3, S14, S15 and S17 indicate that aldose 
reductase inhibitory activity increases with decrease in E-state value 
of atoms 1, 3, 14, 15 and 17 respectively. Compounds with low 
values of E-state parameter for atom 1 (S1) (like 54, 61 and 67), for 
atom 3 (S3) (like 50, 59 and 67), for atom 14 (S14) (like 44 and 64), 
for atom 15 (S15) (like 64 and 70), for atom 17 (S17) (like 64, 68 and 
70) showed comparatively better activity. Substituents containing 
oxygen like methoxy, carboxylic acid and hydroxyl group at position 
1, 3, 14 and 15 is positively contributed towards activity. But for 
position 17 no substitution is required for activity. The statistical 
quality of the model showed acceptable internal validation ( 2

intQ

=0.5078 and 2

( )m LOOr =0.487), external validation ( 2

( 1)ext FQ =0.7626, 

2

( 2)ext FQ =0.762, 2

( )m testr =0.7269), and overall validation ( 2

m(overall)r

=0.535). 

OVERVIEW AND CONCLUSIONS 

The whole dataset (n=70) was divided into a training set (53 
compounds) and a test set (17 compounds) based on k-means 
clustering of the standardized descriptor matrix and model was 
developed from the training set (optimized by Q2). The predictive 
ability of the models was judged from the prediction of the activity of 
the test set compounds. The model indicates the importance of 
hydroxyl group at various positions (like position 4 and 14 etc) of 
the moiety.  Presence of methoxy groups attached to the moiety at 
positions 1, 4, 3 and 14 is beneficial for aldose reductase inhibitory 
activity. The model also indicates that no substitution is required for 
position 16 and 17 respectively.   
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