INTERPENETRATING POLYMER NETWORK (IPN): A NOVEL BIOMATERIAL

SUBHAM BANERJEE*1, SOMASREE RAY 1, SABYASACHI MAITI 1, KALYAN KUMAR SEN 1, UTTAM KUMAR BHATTACHARYYA1, SANTANU KAITTY1, ANIMESH GHOSH2

1Department of Pharmaceutics, Gupta College of Pharmaceutical Sciences, Asharam More, G.T. Road, Asansol-713301, West Bengal, India,
2Department of Pharmaceutical Sciences, Birla Institute of Technology, Mesra-835215, Ranchi, Jharkhand, India.

E-mail: banerjee.subham@yahoo.co.in

ABSTRACT

Intercalating polymer network (IPN) is regarded as one of the most useful novel biomaterial. The invention of IPN can be rendered biocompatible and biodegradable has far reaching and profound long-term implications for the pharmaceutical industry and indeed medicine as a whole. The excellent biocompatibility and safety due to its physical characteristics such as impart stability of the drug in the formulations, improves solubility of hydrophobic drugs, excellent swelling capacity and its biological characteristics, like biodegradability, impart bioavailability, drug targeting in a specific tissue and very weak antigenicity, made IPN the primary resource in both pharmaceutical and medical applications. The potential applications of IPN as drug delivery systems specially for the controlled release drug delivery systems. It was also used for tissue engineering including bone substitutes, stationary phase and cartilage scaffolds. This article reviews focused on the entire features of IPN in both as a drug delivery matrix system and a system for tissue engineering as well as its potential therapeutic applications. Finally it can be concluded that IPN offers novel way to address hydrophobic and low bioavailable drugs and are being applied in a wide range of healthcare settings.

Keywords: Intercalating polymer network, Biomaterials, Drug Delivery, Tissue engineering.

INTRODUCTION

Over the past decades, blends have been investigated to satisfy the need of specific sectors of polymer industry. Such polymeric blends showed superior performances over the conventional individual polymers and consequently, the range of applications have grown rapidly for such class of materials. In the recent years, hydrophobic and biodegradable polymers have been extensively used to develop the controlled release formulations of drugs having short plasma life. Among the various polymers employed, hydrophilic biopolymers are quite suitable in oral applications due to their inherent advantages over the synthetic polymers. The importance of biocompatible and biodegradable polymers is continuously increasing in pharmaceutical applications because of their propensity to form crosslinked three-dimensional network hydrogels that tend to swell in water or biological fluids. Such systems have been considered as a the potential candidate to deliver bioactive molecules, particularly in controlled release applications.

The chemical and physical combination methods and properties of multipolymers have been of great practical and academic interest for the controlled release of drugs because they provide a convenient route for the modification of properties to meet specific needs. Among these methods, considerable interest has been given to the development of IPN based drug delivery systems. This would open up new avenues to use IPN in designing the novel controlled release drug release systems. A combination of judiciously selected natural and synthetic polymers has been found to be useful in enhancing the release of short half-lived drugs under physiological conditions. In order achieve this, the properties of natural and synthetic polymers have been modified by grafting blending and other means. Grafting of vinyl monomers onto natural polymers such as cellulose has been widely accepted.

The purpose of this article is to review entire features of IPN network is synthesized or crosslinked independently in the immediate presence of the other or in other words an IPN is a combination of at least two polymers chains each in network form, of which at least one is synthesized and/or cross-linked in the immediate presence of the other without any covalent bonds between them or the two or more networks can be envisioned to be entangled in such a way that they are concatenated and cannot be pulled apart, but not bonded to each other by any chemical bond.

MERITS OF IPN

In modern era polymer IPN systems gaining huge popularity due to its following inherent advantages:

- Whenever an IPN hydrogel is formed from two polymers at a given temperature, the physical phase separation between the component polymers would be almost impossible because of the infinite zero-viscosity of the gel.
- IPN is also attractive in producing synergistic properties from the component polymers. For example, when a hydrophilic gelling polymer is interpenetrated with a relatively hydrophobic gelling polymer, the resultant IPN hydrogel is expected to have an improved capability of immobilizing a drug.
- IPN systems are known to increase the phase stability of the final product.
- IPN enhance the mechanical properties of the final product.
- As long as the reacting ingredients are blended thoroughly during the synthesis, thermodynamic incompatibility can be made to overcome due to the permanent interlocking of the network segments.

FEATURES OF IPN

The ideal characteristics of an IPN are as follows:

- An ideal IPN can suppress creep and flow.
- IPN can swells in solvents without dissolving.
- IPN are distinguishable from blends, block copolymers, and graft copolymers.
- To keep the Separate phases together when the blends are subjected to stress.

DEFINITION OF IPN

An IPN is a composite of at least two polymers, exhibiting varied characteristics, which is obtained when at least one polymer
• These systems differ mainly because of the number and types of crosslinks that exist in the system.

• Materials formed from IPN share the properties that are characteristic of each network. However, homopolymer alone cannot meet the divergent demand in terms of both properties and performance. Therefore, a composite or an ideal IPN of two or three different polymers would be a better choice.

• Polymer comprising two or more polymer networks which are at least partially interlaced on a molecular scale but not covalently bonded to each other and cannot be separated unless chemical bonds are broken.

• Most ideal IPN are heterogeneous systems comprised of one rubbery phase and one glassy phase which produce a synergistic effect yielding either high impact strength or reinforcement, both of which are dependent on phase continuity.

• Hence, IPN based systems have gained good potential to develop the controlled release delivery of drugs.

CLASSIFICATION OF IPN

BASED ON CHEMICAL BONDING

Covalent Semi IPN: A covalent semi IPN contains two separate polymer systems that are crosslinked to form a single polymer network.

Non-Covalent Semi IPN: A non-covalent semi IPN is one in which only one of the polymer systems is crosslinked.

Fig. 1: Different types of IPN

Fig. 2: Covalent semi IPN.

Fig. 3: Non-covalent semi IPN
A non-covalent full IPN is one in which the two separate polymers are independently crosslinked.

Fig. 4: Non-covalent full IPN.

Non-Covalent Full IPN - A non-covalent full IPN is one in which the two separate polymers are independently crosslinked.

BASED ON ARRANGEMENT PATTERN

Novel IPN - Polymer comprising two or more polymer networks which are at least partially interlocked on a molecular scale but not covalently bonded to each other and can not be separated unless chemical bonds are broken.

Sequential IPN - In sequential IPN the second polymeric component network is polymerized following the completion of polymerization of the first component network.

Simultaneous IPN - Simultaneous IPN is prepared by a process in which both component networks are polymerized concurrently, the IPN may be referred to as a simultaneous IPN.

Semi IPN - If only one component of the assembly is cross linked leaving the other in a linear form, the system is termed as semi-IPN.

IPN-BASED DRUG DELIVERY SYSTEMS

IPN based drug delivery systems are designed to deliver drugs at a particular rate with minimum fluctuation for a desired period of time. Currently several approaches are being pursued for improved delivery of therapeutic products like sheets, films, hydrogel, calcifiable matrix, sponges, tables, capsules, transdermal patches, microspheres, nanoparticles etc.

SHEET

A novel method of producing IPN based drug delivery system is sheeting. Polymeric material comprising an interpenetrating network of a polyol[allyl carbonate], e.g., Nouryset®200 and epoxy resin is prepared by polymerizing 70 to 95 parts by weight of the polyol[allyl carbonate] by radical initiation and polymerizing partially or entirely simultaneously an epoxy resin-forming mixture by acid catalysis. The epoxy resin-forming mixture comprises 10-90 wt. % of aliphatic or cycloaliphatic polyepoxide and 90-10 wt. % of a polyol/anhydride adduct. Sheets can be used in various types of wound dressings and scar management products.

FILMS

IPN films can be used as a piezodialysis membranes. These membranes are not mosaic membranes. It was found that some of these membranes did show piezodialysis effects. One of the successful applications of IPN based delivery systems is the uralkyd/polyglycidyl methacrylate based film which shows good mechanical as well as tensile strength. Biodegradable collagen films or matrices have served as scaffolds for a survival of transfected fibroblasts. While these methods seem to allow an adequate cell survival, the concerns about long-term biocompatibility of non-degradable materials should be taken into account. In several animal models, a long-term expression of a foreign gene after implantation of transfected cells has not been achieved. A combination of collagen and other polymers, such as atelocollagen matrix added on the surface of polyurethane films, enhanced attachment and proliferation of fibroblasts and supported growth of cells. Transplantation of cells embedded in a lattice of polytetrafluoroethylene fibers coated with rat collagen followed by a mixing with matrigel as well as basic fibroblast growth factor showed that a long-term expression of human β-glucuronidase by retroviral-transduced murine or canine fibroblasts was achievable using a collagen-based matrix system. Therefore, IPN based film systems seem to need to contain extra matrices that improve conditions for a long-term cell survival.

IPN FILM AS A CALCIFIABLE MATRIX SYSTEM

One of the problems with implantable biomaterials is their calcification, which is influenced by structure of the implantable system, and determines its in vivo therapeutic efficiency and clinical fate. Calcification of tissue or systems depends on chemical factors that operate at the cellular level around various tissues or biomaterials. Both collagen and elastin are major components of connective tissues, which possess a structure that compromises collagen fibers intimately associated with a remarkably stable elastin network. The suitability of collagen and elastin in many potential medical applications in reconstructive and plastic surgery including controlled delivery of bone morphogenetic protein has been reported. IPN matrix films composed of various combinations of collagen and elastin were developed and evaluated for their suitability as drug delivery systems. Biomaterials should possess mechanical properties capable of withstanding the forces and motions experienced by the normal tissues and have sufficient fatigue strength to ensure a long life of the implant in vivo.

SPONGES

IPN sponges have the ability to easily absorb large quantities of tissue exudate, smooth adherence to the wet wound bed with preservation of low moist climate as well as its shielding against mechanical harm and secondary bacterial infection. IPN based porous sponges have been very useful in the treatment of severe burns and as a dressing for many types of wounds, such as pressure sores, donor sites, leg ulcers and decubitus ulcers by forming a semi-IPNs composed of chitosan and poloxamer. Collagen sponges have been combined with other materials like elastin, fibronectin or glycosaminoglycans. The starting material can be crosslinked with glutaraldehyde and subsequently graft-copolymerized with other polymers, such as polyhydroxethyl methacrylate chains, which are hydrophilic, keep the membranes wet and increase their tensile strength. This further affects the efficiency in the management of infected wounds and burns. The importance of matrix compliance to mechanical response was also reported.

TABLETS

IPN prepared from chitosan/carbopol inter-polymer complex can be used as an extended-release matrix tablet. The solid nature of IPN based tablets seems in vivo to have a great potential for anti-hypertensive action by blending with hydrophilic interpolymer complexes and a hydrophobic waxy polymer.

CAPSULES

Supracolloidal IPN reinforced capsules using micron-sized colloidosomes of poly[(methyl methacrylate-co-divinylbenzene)] microgels were used as scaffold via radical polymerisation of the interior phase to produce hollow supracolloidal structures with a raspberry core-shell morphology.

HYDROGEL

Hydrogels have been widely used as a drug carrier due to its ease in manufacturing and self application. The production of a large and constant surface area is one of the major merits for them to be widely used for clinical and fundamental applications. Various combinations of polymers were made into hydrogel formulations to investigate their potential as a drug delivery system. The combination of natural and synthetic polymers may provide...
mechanical stability and biological acceptability, acquiring from synergistic properties of both materials. An attempt of combining collagen and hyaluronic acid into IPN hydrogels was made to develop a delivery systems to enhance the mechanical strength of natural polymers and to overcome the drawbacks of synthetic polymers. The hydrogels were found stable and resilient. The structure of the IPN based materials was evaluated for the controlled release of drug carriers due to their biodegradability and removable versatility in terms of composition and size. It was found that a coupling of modified gelatin and poly(ethylene glycol) diacrylate of protein loaded interpenetrating network interact with the cell membrane & elicit desired pharmacological responses. IPN hydrogel was also used as Stimulation responsible gel based on interpenetrating network of hydroxy propylyllose and poly(N-isopropylacrylamide). Collagen and polyhydroxymethyl methacrylate into hydrogels was made to develop a delivery system for antitumor drugs, such as 5-FU. The hydrogels were released stable and resilient and did not show any adverse effects, such as calcification, after 6 month of subcutaneous implantation in rats. This system was also very efficient in therapeutic application, which, in this case, was antitumor therapy. Hybrid copolymers of collagen with polyethylene glycol-6000 and polyvinyl pyrrolidone were prepared for the controlled delivery of contraceptive steroids. Two synthetic polymers, poly(vinyl alcohol) and poly(acrylic acid), were blended with two biological polymers, collagen and hyaluronic acid, to enhance the mechanical strength of natural polymers and to overcome the biological drawbacks of synthetic polymers. These blends were formulated into hydrogels, films and sponges, and subsequently loaded with growth hormone. The results of this work showed that growth hormone could be released from collagen- poly(vinyl alcohol) hydrogels in a controlled release pattern and the rate and quantity of growth hormone released were mainly dependent on collagen content in the system.

MICROSOPHERES

One of the successful applications of interpenetrating networks is for the controlled release of drugs. A microspherical formulation of poly(vinyl alcohol) and guar gum hydrogel microspheres for the controlled delivery of nifedipine by emulsion cross-linking method was developed for treatment in severe hypertension. Another approach was developed by the IPN formation of graft copolymer of guar gum with modified poly(acrylic-amide) to form hydrogel microspheres. The microspheres were loaded with two antihypertensive drugs, verapamil hydrochloride (water-soluble) and nifedipine (water insoluble) to investigate their controlled release characteristics. IPN based microspherical formulation was also used for the prolong delivery of anti-cancer drug such as captemibine by formation of chitosan-poly(ethylene oxide-g-acrylamide) inter-molecular rigid network and 5-fluorouracil hydrogel microspheres of chitosan and pluronic F-127 for controlled release of drugs. Novel pH-sensitive IPN microgels based on chitosan, acrylamide- graft poly(vinyl alcohol) and hydroyzied acrylamide-grafted-poly(vinyl alcohol) used in the controlled release of an antibiotic drug cefadroxil. Another successful attempt was successful encapsulation of acyclovir, an antiviral drug with limited water solubility, into IPN microspheres by varying the ratio of acrylamide grafted dextran and chitosan. In vitro release studies indicated the dependence of drug release rates on both the extent of crosslinking and amount of acrylamide grafted dextran used in preparing microspheres; the slow release was extended up to 12 hour.

NANOPARTICLES

Current state of art is witnessing a revolution of nanoparticles in new techniques for drug delivery systems. These techniques are capable of controlling the rate of drug delivery, sustaining the duration of therapeutic activity or targeting the drug to specific site of tissue. Novel quasi-interpenetrating network/gold nanoparticles composite matrices were studied on DNA sequencing performances by capillary electrophoresis technique. A thermally responsive polymer-metal nanocomposite system comprised of a solid gold nanoparticle core and thermally responsive IPN shell, which was surface functionalized or PE-glylated with a covalently bound linear poly(ethylene glycol) chain layer. Gold nanoparticles (50 nm diameter) were prepared using standard gold chloride and citrate reduction method. These particles were then encapsulated inside of a polycrylamide (PAAM)/poly(acrylic acid) IPN shell via an in situ inverse emulsion polymerization. The surface of the nanocomposite system was then PE-glylated via covalent grafting of a linear methoxy-PEG-N-hydroxysuccinimide to the primary amine groups of the PAAM network. Extensive research efforts were given to synthesize hydroxyacamptothecin-loaded IPN nanoparticles made of amphiphilic copolymer and normal polymer for the controlled delivery of such anti-cancer drug. Currently several approaches are being pursued for the synthesis and characterization of IPN based nanopolyparticles like thiolated chitosan coated poly hydroxethyl methacrylate nanoparticles via poly(ethylene glycol) modified N trimethyl-aminoethylmethacrylate-chitosan nanoparticles via inverse emulsion polymerization. Such nanospheres showed a continuous release of the entrapped drug up to 10 days in vitro and showed comparable in-vitro cytotoxicity against HepG2 cells compared to the free drug.

IPN BASED DRUG DELIVERY SYSTEMS FOR TISSUE ENGINEERING

IPN AS BONE SUBSTITUTE

Among the many tissues in the human body, bone has been considered as a powerful marker for regeneration and its formation serves as a prototype model for tissue engineering based on morphogenesis. For instance, Collagen in combination with other polymers or chemicals was also used for orthopaedic defects. Demineralized bone collagen was used as a bone graft material for the treatment of acquired and congenital orthopaedic defects either by itself or in combination with hydroxyapatite. The result of this study showed that grafts demineralized bone collagen in combination with hydroxyapatite was an excellent osteoinductive material and could be used as a bone substitute. To assess the relative effects of implant surface chemistry and topography on osseointegration within the rat femoral ablation implant model, a nonfoaming, enzymatically degradable IPN (eIPN) of poly(AAm-co-EG/AAc) amenable to presenting the cell signaling domain Arg-Gly-Asp (RGD), was developed. Moderate enhancement of peri-implant bone formation was found after 28 days using the enzymatically degradable IPN (eIPN) without peptide modification. A recent study showed that IPNs of poly(acrylamide-co-ethylene glycol) functionalized with an -Arg-Gly-Asp (RGD) containing 15 amino acid peptides, derived from rat bone sialoprotein (bsp-RGD(15), were grafted to titanium implants in an effort to modulate bone formation in the peri-implant region in the rat femoral ablation model. IPN AS BIOENGINEERED TISSUES

Compositions for tissue engineering and drug delivery have been developed based on solutions of two or more polymers which form semi-interpenetrating or IPNs upon exposure to active species following injection at a site in a patient in need thereof. The polymers crosslink to themselves but not to each other; semi-interpenetrating networks are formed when only one of the polymers crosslinks. The resulting viscous solutions retain the biologically active molecules or cells at the site of injection until release or tissue formation, respectively, occurs. Recent progress in tissue engineering may lead to well-characterized and reproducible biomaterials from natural IPN based materials. Biological tissue grafts in the form of collagen-based matrix have been derived from bladder, ureter or small intestine. These collagen constructs were designed to be similar to synthetic polyproteins in terms of their ability to persist. The structure-mechanical behavior relationship of biomaterials acquired from intestine submucosa demonstrated mechanical anisotropy and stiffer direction preferred in biomaterials. Highly-regulated signals surrounding stem cells,
such as growth factors at specific concentrations and matrix mechanical stiffness, have been implicated in modulating stem cell proliferation and maturation. Using a biomimetic interfacial IPN, we define a robust synthetic and highly-defined platform for the culture of adult neural stem cells. IPNs were modified with two cell-binding ligands.

IPN AS CARTILAGE SCAFFOLDS
In this study, alginate and alginate:chitosan semi IPN scaffolds were prepared by freeze-drying process. These structural and cellular outcomes demonstrate potential utility of chitosan semi IPNs in alginate scaffolds. Comparative results found in relation to alginate scaffolds, support the necessity for alginate:chitosan scaffolds for improved cartilage tissue engineering.

THERAPEUTIC APPLICATIONS OF IPN BASED DRUG DELIVERY SYSTEMS
IPN based formulations can be used as a drug delivery system to deliver different drugs used in cancer therapy, infectious diseases, cardac diseases.

INFECTIONOUS DISEASES
Full and semi-IPNs based on polyacrylic acid and gelatin loaded gentamicin sulfate were evaluated for tissue response in rats. Which showed no additional local or systemic reaction suggesting the potential usefulness of the hydrogels as carrier for drugs.

CANCER THERAPY
A biodegradable polymer scaffold was developed using collagen and chitosan, in the form of interpenetrating polymeric network (IPN), for in vitro culture of human epidermoid carcinoma cells (HEp-2). The results of the above studies suggest that the scaffolds prepared from collagen and chitosan can be utilized as a substrate to culture HEp-2 cells and can also be used as an in vitro model to test anti-cancerous drugs. A biodegradable polymer scaffold was developed using collagen and chitosan, in the form of interpenetrating polymeric network, for in vitro culture of human epidermoid carcinoma cells (HEp-2, Cincinnati). Glutaraldehyde was used as cross-linking agent for the development of scaffold. In vitro culture studies were carried out using HEp-2 cells, over the selected scaffold and its growth morphology was determined through optical photographs taken at different magnifications at various days of culture. The results of the above studies suggest that the scaffolds prepared from collagen and chitosan can be utilized as a substrate to culture HEp-2 cells and can also be used as an in vitro model to test anti-cancerous drugs.

CHRONIC PAIN TREATMENT
Controlled release system for local application of analgesics hydromorphone, morphine, and codeine and a local anesthetic, bupivacaine loaded interpenetrating network system was prepared by using a biocompatible, biodegradable copolyester, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and another biocompatible but synthetic, nondegradable polymer, poly(2-hydroxyethyl methacrylate), which shows prominent actions to relief from chronic pain.

TREATMENT OF CARDIAC DISEASE
In this study, we examined cell-surface interactions between a poly(acrylamide-co-polyethylene glycol/acrylic acid) interpenetrating network (IPN) hydrogel and aortic endothelial cells (ECs). ECs migrated and proliferated at high rates regardless of the RGD surface concentration. These results suggest that this IPN can be used to promote endothelialization of vascular implants made of polymeric and metal materials for cardiovascular applications. Various combinations of collagen and elastin, showed controlled delivery device for cardio-vascular drugs. Such controlled delivery device used to simulate the calcification process of implantable biomaterials, such as bioprosthetic heart valve (BHV). In BHV, the aortic wall and leaflet have mainly served as calcifiable matrix.
REFERENCES

