FORMULATION AND EVALUATION OF TRIMETAZIDINE HYDROCHLORIDE LOADED CHITOSAN MICROSPHERES

CHINTAGUNTA PAVANVEENA*, KAVITHA K, ANIL KUMAR S N
Pharmaceutics Division, Bharathiyar College of Pharmacy, Bharathinagar, Madin, Karnataka-571422, India. E mail: chpveena@gmail.com

Received: 14 Jan 2010, Revised and Accepted: 18 Feb 2010

INTRODUCTION

Oral controlled release (CR) dosage forms (DFs) have been developed over the past three decades due to their considerable therapeutic advantages such as ease of administration, patient compliance and flexibility in formulation. Microspheres carrier systems made from the naturally occurring biodegradable polymers have attracted considerable attention for several years in sustained drug delivery. Recently, dosage forms that can precisely control the release rates and target drugs to a specific body site have made an enormous impact in the formulation and development of novel drug delivery systems. Microspheres form an important part of such novel drug delivery systems1-3. They have varied applications and are prepared using assorted polymers4. However, the success of these microspheres is limited owing to their short residence time at the site of absorption. It would, therefore, be advantageous to have means for providing an intimate contact of the drug delivery system with the absorbing membranes5-6. This can be achieved by coupling bioadhesion characteristics to microspheres and developing bioadhesive microspheres. Bioadhesive microspheres have advantages such as efficient absorption and enhanced bioavailability of drugs owing to a high surface-to-volume ratio, a much more intimate contact with the mucus layer, and specific targeting of drugs to the absorption site7-13. Chitosan (obtained by deacetylation of chitin) is a cationic polymer that has been proposed for use in microsphere systems by a number of authors14-17. Chitosan was selected as a polymer in the preparation of mucoadhesive microspheres because of its good mucoadhesive and biodegradable properties. Hence, there is a need to develop an oral drug delivery system that is convenient for patients. Various synthetic and natural polymers like alginate, chitosan and polyesters have been used to develop drug delivery systems for entrapping and delivering drugs orally18. The objective of the present investigation was to develop an extended and controlled release composition and formulation of trimetazidine using chitosan polymer along with sodium tripolyphosphate to reduce dose/dosing frequency in the angina pectoris, which otherwise demands prolonged chemotherapy and to identify the modulation of drug release from the formulated matrix devices and demonstrate its utility in pharmaceutical drug carrier systems.

METHODS

PREPARATION OF MICROSPHERES

The preparation of the microspheres followed the method described by Ko et al with some modifications. Chitosan solutions of varying concentrations were prepared by dissolving them in dilute acetic acid (1% v/v) (2:10), was mixed with the aqueous phase (chitosan solution) in a homogenizer at 5000 rpm for 20 min. The volume ratio of CH₂Cl₂: aqueous phase was 1:10. The emulsion was cross-linked by dropping through a spray gun into the TPP solution (10%). After cross-linking was allowed for varying time, microspheres were washed with distilled water repeatedly and vacuum dried for 12 h. Three different formulations with drug polymer ratios (1:1, 1:2, 1:3) are prepared and coded as F1, F2 and F3.

EVALUATION PARAMETERS

DRUG POLYMER INTERACTION (FTIR) STUDY

IR spectroscopy was performed on Fourier transformed infrared spectrophotometer (840, Shimadzu, Japan). The pellets of drug and potassium bromide were prepared by compressing the powders at 20 psi for 10 min on KBr-press and the spectra were scanned in the wave number range of 4000- 600 cm⁻¹. FTIR study was carried on pure drug, physical mixture, formulations and empty microspheres.

SCANNING ELECTRON MICROSCOPY (SEM)

Scanning electron photomicrographs of drug-loaded chitosan microspheres were taken. A small amount of microspheres was spread on gold stub. Afterwards, the stub containing the sample was placed in the scanning electron microscopy (SEM) chamber. A scanning electron photomicrograph was taken at the acceleration voltage of 20 KV.

PARTICLE SIZE MEASUREMENT

The size of the prepared microspheres was measured by the optical microscopy method using a calibrated stage micrometer for randomly selected samples of all the formulations.

PERCENTAGE YIELD

Per centage practical yield is calculated to know about percentage yield or efficiency of any method, thus it helps in selection of appropriate method of production. Practical yield was calculated as the weight of microspheres recovered from each batch in relation to the sum of starting material. The percentage yield of prepared microspheres was determined by using the formula.

*Corresponding author
The prepared microspheres were then characterized for their various properties.

DETERMINATION OF DRUG CONTENT

Practical drug content was determined by taking a weighed quantity of chitosan microspheres (approximately 100 mg) in a 100-ml volumetric flask. Sufficient quantity of water was added to make the volume 100 ml. The suspension was shaken vigorously and then kept for 24 hours at room temperature with intermittent shaking. Supernatant was collected by centrifugation and drug content in supernatant was determined by UV spectrophotometry at suitable wavelength (270 nm) using a Shimadzu UV visible spectrophotometer (SHIMADZU, Spectrascan-2200, Japan).

DETERMINATION OF PERCENTAGE DRUG ENTRAPMENT (PDE)

Efficiency of drug entrapment for each batch was calculated in terms of percentage drug entrapment (PDE) as per the following formula:

\[
PDE = \frac{\text{Practical drug content}}{\text{Theoretical drug content}} \times 100
\]

Theoretical drug content was determined by calculation assuming that the entire drug present in the chitosan solution used gets entrapped in microspheres and no loss occurs at any stage of preparation of microspheres.

IN VITRO RELEASE

Dissolution studies of trimetazidine from microspheres were performed according to USP XXII type I dissolution apparatus in pH 1.2 for first 2 h and subsequent rest of the release study was performed in phosphate buffer of pH 7.4. The temperature was maintained at 37±0.5°C and the rotation speed was 100 rpm. The 5 ml of sample was withdrawn at various time intervals and replenished with an equal volume of fresh dissolution media. The drug content in the sample was analyzed spectrophotometrically at 270 nm. A study was performed concurrently with placebo microspheres to record for any interference by the microsphere components.

X-RAY POWER DIFFRACTOMETRY (X-RD) STUDY

X-ray diffractometry of the Trimetazidine hydrochloride, physical mixture of Trimetazidine hydrochloride and polymer, Trimetazidine hydrochloride microspheres and blank microspheres were performed by a diffractometer using model (Joel JDX-8030, Japan) equipped with a graphite crystal monochromator (Cu-Kα) radiations to observe the physical state of TMH in the microspheres.

RESULTS AND DISCUSSION

In the present work controlled release microspheres of Trimetazidine hydrochloride were formulated using chitosan polymer by ionic cross-linking emulsion technique. Three batches prepared with different polymer ratios were evaluated for physical properties like FTIR, SEM, particle size, Percentage yield, percentage drug content, encapsulation efficiency, in vitro dissolution, release kinetics and XRD of Trimetazidine hydrochloride microspheres.

Table 1: Percentage yield, drug content, encapsulation efficiency and average particle of Trimetazidine microspheres and Diffusion exponent (n) of Peppas model and Regression coefficient (r²) of Trimetazidine Hydrochloride release data from microspheres according to different kinetic models.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Yield</td>
<td>50</td>
<td>67</td>
<td>76</td>
</tr>
<tr>
<td>Drug content (%)</td>
<td>33.80</td>
<td>21.30</td>
<td>13.70</td>
</tr>
<tr>
<td>Encapsulation Efficiency (%)</td>
<td>77.60</td>
<td>83.90</td>
<td>84.80</td>
</tr>
<tr>
<td>Average particle size</td>
<td>91±5.24</td>
<td>110±5.84</td>
<td>217±8.49</td>
</tr>
<tr>
<td>Zero Order</td>
<td>0.99±0.0008</td>
<td>0.976±0.0006</td>
<td>0.994±0.0005</td>
</tr>
<tr>
<td>First Order</td>
<td>0.949±0.05</td>
<td>0.965±0.06</td>
<td>0.953±0.09</td>
</tr>
<tr>
<td>Higuchi</td>
<td>0.956±0.0005</td>
<td>0.964±0.0002</td>
<td>0.952±0.0006</td>
</tr>
<tr>
<td>Peppas Model (n)</td>
<td>0.486±0.08</td>
<td>0.399±0.05</td>
<td>0.423±0.06</td>
</tr>
</tbody>
</table>

Fig. 1: Fourier Transform Infrared (FTIR) Spectrum. (a) Trimetazidine hydrochloride, (b) Chitosan polymer, (c) Physical mixture of Trimetazidine hydrochloride and Chitosan, (d) Trimetazidine hydrochloride microspheres, (e) Blank microspheres.

Fig. 2: Scanning Electron Micrographs (SEM) of Trimetazidine hydrochloride microspheres. (a) Microspheres prepared with 1:1 drug/polymer ratio, (b) Microspheres prepared with 1:2 drug/polymer ratio, (c) Microspheres prepared with 1:3 drug/polymer ratio.
The FTIR Spectra of Trimetazidine hydrochloride, Chitosan, physical mixture of Trimetazidine hydrochloride and Chitosan, formulations and blank microspheres are shown in the Fig 1. From this it is clear that the peaks at Alkane C-H stretch (2920.0), secondary amine N-H stretch (3446.6), aromatic C=C stretch (1602.7), tertiary amine C-N stretch (1363.6), ether –O- stretch (1288.4) cm⁻¹ are present in both the pure and formulations without any change in their positions indicating no chemical interaction between Trimetazidine hydrochloride and polymers.

The Controlled release microspheres of Trimetazidine hydrochloride prepared by ionic cross-linking were found to be almost spherical and free-flowing. SEM was performed on the prepared microspheres of 1:1, 1:2 and 1:3 to access their surface and morphological characteristics as shown in Fig 2.

It was observed that as the polymer ratio in the formulation increases, the product yield also increases. The low percentage yield in some formulation may be due to microspheres lost during the washing process. Percentage yield, drug content, encapsulation efficiency shown in Fig 3 and average particle shown in Fig 4 were given in Table 1.

Keeping drug ratio constant and varied polymer ratio as the polymer concentration increases viscosity, which influences the interaction between disperse phase and dispersion medium that affects the size distribution of particle. If there was increase in the amount of polymer concentration, there was increase in relative viscosity so as
Trimetazidine release from the microsphere was studied for 12 h the drug released at constant rate in all these preparation and showed controlled release. The release of trimetazidine hydrochloride in two different media (pH 1.2 and 7.4) is shown in Fig 5 (b) and 5 (c). The percent of drug release at pH 1.2 was higher in comparison to that at pH 7.4 exhibiting pH-sensitivity of the microspheres. At the end of 4 h, 97.02% of drug load was depleted from formulation in dissolution media (pH 1.2), in comparison to 68.88% in media (pH 7.4). The results was similar for microspheres prepared with high concentration of chitosan with a release of 85.92% for formulation at pH 1.2 and sustained release at pH 7.4. An initial burst release of drug was observed from all the batches that can be attributed to two reasons, the leaching of drug on the microspheres outer surface and faster ingress of dissolution medium and subsequent diffusion of drug. However, on changing the pH from lower to higher level, the drug released slowed down. At the end of 12 h, 95.62% of drug was released from formulation. Similar pattern was observed in the case of other formulations. Data obtained for in vitro release studies was utilized for release kinetics. The co-efficient of determination indicated that the release data was best fitted with zero order kinetics. Higuchi equation explains the diffusion controlled release mechanism. The diffusion exponent ‘n’ values of Korsemeyer-Peppas model was found to be in the range of 0.5 indicating Pickian of drug through Trimetazidine hydrochloride microspheres were given in Table 1.

Wide angle X-ray diffraction patterns of the Trimetazidine hydrochloride, physical mixture of Trimetazidine hydrochloride and polymer, formulation and blank microspheres were shown in Fig 6. The XRD data indicates that the Trimetazidine hydrochloride is still present in its lattice structure in the physical mixture where as it is completely amorphous inside the Trimetazidine hydrochloride microspheres. This may be due to the conditions used to prepare the Trimetazidine hydrochloride microspheres lead to cause complete TMH amorphization

ACKNOWLEDGEMENT

Authors are thankful to Bharathi College of Pharmacy for their support encouragement in carrying out this work.

REFERENCES
