The International Journal of Current Pharmaceutical Research
Vol 2, Issue 3, 2010
ISS-0975-7066

Research Article

CLARITHROMYCIN MUCOADHESIVE MICROSPHERES FOR ANTI-HELICOBACTER PYLORI THERAPY: FORMULATION AND INVITRO EVALUATION

N.VENKATESWARAMURTHY*, R. SAMBATHKUMAR, M.VIJAYABASKARAN AND P. PERUMAL

Department of Pharmaceutics, J.K.K.Nataraja College of Pharmacy, Komaramapalayam-638183, India, Email: murthyvenki@rediffmail.com

Received 08 Jan 2010, Revised and Accepted 05 Feb 2010

ABSTRACT

Helicobacter pylori (H.pylori) is a gram-negative bacillus responsible for one of the most common infections found in humans worldwide. H pylori causes gastric diseases, such as peptic ulcer, gastric mucosa associated lymphoma. Recent studies shows that, decreasing efficacy of therapies worldwide. One reason for the incomplete eradication of H. pylori is probably due to the short residence time of antimicrobial agents in the stomach so that effective antimicrobial concentration cannot be achieved in the gastric mucous layer or epithelial cell surfaces where H. pylori exists. The purpose of this study was to design mucoadhesive microspheres containing Clarithromycin as an anti-H. pylori agent to deliver the drug specifically to mucus layer where H.pylori resides and evaluate the effectiveness of the mucoadhesive microspheres for H. pylori eradication therapy. Microspheres were prepared by using Eudragit RL100 as matrix and Carbopol 974P as a mucoadhesive polymer. The microspheres were prepared by emulsion solvent evaporation technique. The prepared microspheres were evaluated with respect to the particle size, production yield, encapsulation efficiency, shape and surface properties, mucoadhesive property, in vitro drug release and suitability for anti Helicobacter pylori effect. The preliminary results show great promise for this delivery strategy in the treatment of H. Pylori infection.

Key words: Helicobacter pylori, Mucoadhesive, Microspheres.

INTRODUCTION

The discovery of Helicobacter pylori (H. pylori) offered the etiologic agent of the initiating event of the inflammatory cascade. It has been confirmed that the development of gastric cancer spans over several decades sequentially starting with the acquisition of H. pylori infection and the development of chronic active gastritis. Over time, the development of glandular atrophy and intestinal metaplasia takes place in a subset of patients. Finally, gastric cancer would eventually arise. It was suggested that H. pylori infection leads to an increased risk, in the order of 4 to 9 folds, of developing precancerous gastric conditions especially when the infection occurs in childhood. In 1994 the International Agency for Research on Cancer (IARC) monograph committee classified H pylori as a class I carcinogen to Humans. On the other hand, H. pylori are also the cause of other gastric diseases, such as peptic ulcer, gastric mucosa associated lymphoma. Clarithromycin has highest rate of eradication of H. pylori in monotherapy in vivo. However, some other reports and clinical trials indicate that the therapies cannot bring out complete eradication of H. pylori and suggest that the therapeutic effect needs more investigation. One reason for the incomplete eradication of H. pylori is probably due to the short residence time of antimicrobial agents in the stomach so that effective antimicrobial concentration cannot be achieved in the gastric mucous layer or epithelial cell surfaces where H. pylori exists. Mucoadhesive microspheres highly suitable drug delivery system for H.pylori eradication because it specifically bind with mucus where H.pylori resides and deliver the antibiotic for longer period. The purpose of this study was to design mucoadhesive microspheres containing Clarithromycin as an anti-H. pylori agent and to evaluate the effectiveness of the mucoadhesive microspheres for H. pylori eradication therapy.

MATERIALS AND METHODS

Materials

Clarithromycin was gifted by Ranbaxy laboratories Ltd, New Delhi, India, was obtained as gifts from Colorcon Asia Pvt. Ltd, Mumbai, India and Carbopol 974P was a gift from BF Goodrich Co., Germany. Eudragit RL 100 was a gift sample from Microlabs, Bangalore. All other reagents and chemicals used were of analytical grade.

Preparation of Microspheres

Microspheres were prepared by a solvent evaporation method. The solvent system acetone/liquid paraffin was used. Agglomeration of microspheres was prevented by using 1% w/v Span80. Eudragit RL 100 was used to form a matrix of microspheres and mucoadhesive polymer were chosen to produce mucoadhesions is Carbopol 974P. Eudragit RL 100 was dissolved in acetone and weighed quantity of Clarithromycin, Carbopol 974P were dispersed it. The total volume of acetone was 12 ml. This homogeneous final dispersion was cooled to 5 °C and poured slowly with stirring (700 rpm) into 80 ml of liquid paraffin containing 1% w/v span 80, which was previously also cooled to 5 °C. The obtained emulsion was stirred at 40 °C for 40 min. The suspension of microspheres in liquid paraffin was filtered and microspheres were washed by n-hexane and dried in vacuum at room temperature overnight.

| Table 1: Formulation composition of mucoadhesive microspheres of Clarithromycin |
|----------------------------------|--------|--------|
| Formulation Code | Ethyl cellulose 100(%w/v) | Carbopol 974P(%w/v) |
| F1 | 3 | 1.0 |
| F2 | 5 | 1.0 |
| F3 | 7 | 1.0 |
| F4 | 5 | 0.5 |
| F5 | 5 | 1.5 |
| F6 | 5 | 2.0 |
Scanning electron microscopy

Scanning electron photomicrograph of Clarithromycin loaded mucoadhesive microspheres were taken. A small amount of microspheres was spread on glass stub. Afterwards, the stub containing the sample was placed in the scanning electron microscope (JSM 5610 LV SEM, JEOL, Datum Ltd, Tokyo, Japan) chamber. Scanning electron photomicrograph was taken at the acceleration voltage of 20 KV, chamber pressure of 0.6 mm Hg, at different magnification.

Particle size measurement

The prepared microspheres were sized by using a Malvern 2600 Laser Diffraction Spectrometer. The size of the microspheres was determined in n-hexane as a non-dissolving dispersion medium and the particles were suspended mechanically by magnetic stirring during the measurement.

Degradation of clarithromycin in pH 1.2

The degradation rate of the antimicrobial agent at pH 1.2 was examined by reported method with slight modification. A known amount of clarithromycin was added to the medium, which was preheated at 37ºC±0.2°C, to make a final concentration of 10.0 μg/ml. An aliquot of the medium was withdrawn at predetermined time intervals and neutralized with a NaOH solution before being quantified by HPLC. Then the solution was filtrated through a 0.45 μm syringe filter then analyzed for clarithromycin content by reversed-phase high performance liquid chromatography (RP-HPLC) method using a mobile phase consisting of acetonitrile-aqueous 0.05 M phosphate buffer solution of pH 4.0 (40:60 v/v). The apparatus used for HPLC analysis was an Agilent 1100 quaternary pump, with a variable wavelength detector, thermostatted autosampler and column thermostat. A Hypersil ODS C18 column (250mm×4.6mm ID, 5 μm, Thermo, UK) was fitted with a Phenomenex guard column packed with octadecyl C18 (Phenomenex, USA).The column temperature was maintained at 40ºC and flow rate of 1ml/min. The The concentrations of the parent drug remaining were analyzed by RP-HPLC assay. The degradation of clarithromycin was assumed to follow pseudo-first order kinetics, which is described by the following equation:

$$C = C_0 e^{-kt}$$

in which C is the concentration of clarithromycin remaining at time t, C_0 is the initial concentration of clarithromycin, and k is the pseudo-first order degradation rate constant. The half-life ($t_{1/2}$) of clarithromycin was determined from the pseudo-first order degradation rate constant. Degradation rate constant used to correct the drug release data obtained in acidic media.

![Fig. 1: SEM photograph of microsphere (Formulation F6)](image)

Table 2: Physico-chemical characteristics of the Clarithromycin loaded mucoadhesive microspheres

<table>
<thead>
<tr>
<th>S.No</th>
<th>Formulation code</th>
<th>Mean Particle size (µm)</th>
<th>Drug Entrapment (%) ±S.D (n=3)</th>
<th>Mucoadhesion (%) ±S.D* (n=3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F1</td>
<td>155</td>
<td>82±1.71</td>
<td>83±0.153</td>
</tr>
<tr>
<td>2</td>
<td>F2</td>
<td>273</td>
<td>88±1.32</td>
<td>85±1.134</td>
</tr>
<tr>
<td>3</td>
<td>F3</td>
<td>311</td>
<td>90±1.51</td>
<td>88±1.09</td>
</tr>
<tr>
<td>4</td>
<td>F4</td>
<td>173</td>
<td>90±1.67</td>
<td>83±1.756</td>
</tr>
<tr>
<td>5</td>
<td>F5</td>
<td>251</td>
<td>86±1.54</td>
<td>92±1.987</td>
</tr>
<tr>
<td>6</td>
<td>F6</td>
<td>306</td>
<td>82±1.13</td>
<td>95±1.644</td>
</tr>
</tbody>
</table>

S.D = Standard deviation

Determination of drug encapsulation efficiency

To determine the total drug content of microspheres a known amount of microspheres were ground to fine powder. Accurately weighed (50mg) grounded powder of microspheres were soaked in 50 ml of distilled water and sonicated using probe sonicator for 2 h. The whole solution was centrifuged using a tabletop centrifuge to remove the polymeric debris. Then the polymeric debris was washed twice with fresh solvent (water) to extract any adhered drug. The clear supernatant solution was filtrated through a 0.45 μm syringe filter then analyzed for Clarithromycin content by high performance liquid chromatography and the conditions for the HPLC assay were the same as before.

In Vitro Drug Release Studies

Release of Clarithromycin from the microspheres was studied in 0.1N HCL (900 ml) using a USP XXIII paddle method Dissolution Rate Test Apparatus (Disso 2000, Labindia) with a rotating
RESULTS AND DISCUSSION

The mucoadhesive microspheres Clarithromycin prepared in this study were well-rounded spheres with the size ranging approximately from 155 to 306 µm. The study of in vitro bioadhesion revealed that all the batches of prepared microspheres had good bioadhesive property ranging from 83±0.153% to 95±1.644%. From the result of the in vitro release test, the effect of Eudragit RL100 concentration on Clarithromycin release from were observed with the increase in polymer concentration in the density of the polymer matrix and also increase in the diffusional path length which the drug molecules have to traverse. Similarly, the effect carbopol 974p concentration on release properties of Clarithromycin were also studied. An increase in carbopol 974p concentration caused retardation in drug release from the microspheres because of an increase in the viscosity of polymer solution and formation larger size microspheres. In vitro studies clearly indicates that the prepared formulations possess good bioadhesive properties. These properties enable the microspheres to adhere to the gastric mucosal surface and stay in stomach for prolonged periods and could ensure the stability of Clarithromycin in gastric environment, which eventually resulted in better eradication of H. pylori than the conventional dosage forms.

REFERENCES