

Review article

EXPLORING POTENTIAL OF 4-THIAZOLIDINONE: A BRIEF REVIEW MULAY ABHINIT, MANGESH GHODKE, NIKALJE ANNA PRATIMA*

*Y. B. Chavan College of Pharmacy,Dr. Rafiq Zakaria Campus, Aurangabad-431001, Maharashtra, India, E-mail: ana@k.st Received- 06 March 09, Revised and Accepted- 30 March 09

ABSTRACT

Thiazolidinone, a saturated form of thiazole with carbonyl group on fourth carbon, has been considered as a magic moiety (wonder nucleus) which posses almost all types of biological activities. This diversity in the biological response profile has attracted the attention of many researchers to explore this skeleton to its multiple potential against several activities. Present article is sincere attempt to review chemistry, synthesis, spectral studies and applications of 4-thiazolidinone.

Key words: Thiazolidinone, Thiazole.

INTRODUCTION

Thiazolidinones are the derivatives of thiazolidine which belong an to important of heterocyclic group compounds containing sulfur and nitrogen in a five member ring. A lot of research work on thiazolidinones has been done in the past. The nucleus is also known as wonder nucleus because it gives out different derivatives with all different types of biological activities. Numbers of methods for synthesis by using various agents are available in the references.

Physical Properties

The 3-unsubstituted 4-thiazolidinones are usually solids, often melting with decomposition, but the attachment of an alkyl group to the nitrogen lowers the melting point. The 4-thiazolidinones that do not contain aryl or higher alkyl substituents are somewhat soluble in water¹.

Chemistry

Considerable confusion concerning the structure of 4-thiazolidinones exist in the early literature and noncyclic formulas were at first proposed for pseudothiohydantoin and for rhodanine¹. 4-thiazolidinones are derivatives of thiazolidine with a carbonyl group at the 4 position². Substitution is possible at 2, 3 and 5 position. Various optical and geometrical isomers are reported in the references³. A series of regioselective isomers has been reported in some

works^{4,5}. The carbonyl group of 4thiazolidinone is highly unreactive. But in few cases 4-thiazolidinone on reaction with Lawesson's reagent gives corresponding 4-thione derivatives⁶. A detail study of tautomerism in 2imnothiazolidine-4-one has been done by *Akerblom E.*⁷.

Syntheses of 4-thiazolidinones

Several methods for syntheses are available in literature which involve

conventional one pot, two pot synthesis^{8,9} and microwave as well as combinatorial syntheses methods. The dithiocarbamates formed by the reaction of primary amine with carbon disulfide in the presence of base react with haloalkanoic acid in the presence of NaHCO₃ to give substituted 2-thiono-4thiazolidinones⁹ as presented in the scheme 1.

SCHEME 1

The synthesis of 2-imino-4thiazolidinones-4-14C has been reported by using thiourea and sodium salt of $acid^{(10)}$. monochloroacetic labeled Another method of synthesis of 4thiazolidinones is by use of thiocyanate, alkyl isothiocyanate with hydrazide/ acetamide followed by the treatment with ethyl bromoacetate and sodium acetate¹¹. Schiff's bases obtained by the condensation of ketones and amines also react with α -mercaptoacetic acid to give

2,2-disubstituted-4-thiazolidinones¹². Desai KR et al^{13} has carried out the microwave assisted synthesis of thiazolidinone from the Schiff's bases (scheme 2) by using thiolactic acid. The products synthesized by were conventional and microwave synthesis and the yield were compared with each other. They concluded that the percent yield with the microwave irradiated synthesis better than was the conventional.

SCHEME 2

Use of task specific ionic liquid as synthetic equivalent of ionic liquidphase matrices for the synthesis of small library of 4-thiazolidinone is also possible. Ethylene glycol is functionalized in good yields with 4-(formylphenoxy) butyric acid by using DCC/ DMAP catalyst. The synthesis was performed by one pot three component condensation under microwave dielectric heating^{18,19}. Lot of

Attempt to synthesize combinatorial libraries of 4-thiazolidinones are present in the literature as reported by Look GC et al¹⁴. HPLC and Mass spectroscopic analysis were done for checking the the quality purity and assure derivatives¹⁵. Recently library of more 42,000 compounds than were synthesized by encoding 4thiazolidinone library on solid phase. Three sets of 35 building blocks were combined encoded by split-pool synthesis give series of to a compounds¹⁶.

One pot three component synthesis containing aldehyde, thiourea and chloroform (scheme 3) to give 2-amino-4-thiazolidinone derivatives was also reported¹⁷. Various imino thiazolidinones were developed by using different reagents with different reaction conditions.

work has been done on the microwave dielectric heating based techniques either one step three component or two step processes²⁰⁻²⁴. Microwave method is easiest and rapid method of synthesis. The yield of product obtained is better than the conventional technique. Generally environmentally benign catalysts are used for the synthesis which helps in the less pollution and lower wastage of the reagents.

Spectral study

Ultra violet spectra

The U.V. spectral study in tabular form present in earlier literature was reviews^{1,7}. The ultraviolet absorption spectra of a series of 2-(arylimino)-4thiazolidinones containing electron donor and electron acceptor substituents in the phenyl ring were studied²⁵. When substituents are present in the Para position of the phenyl ring, the position of characteristic thione absorption is shifted. UV spectra of the 5-arylazo derivatives of thiazolidin-4-one 5phenylazo-2-phenyliminothiazolidin-4-One were synthesized in the literature²⁶. The displacement of the absorption maximum of the N=N group to the longwave part of the spectrum by 42 nm in the spectrum of 5-arylazo derivative of substituted compound caused by the presence of a nitro group in the chain of conjugated double bonds with the azo group is a confirmation of the existence of the compound in the azo form.

Infrared Spectra

The infrared spectra of 4-thiazolidinones are helpful in determining the structure of the compounds. It is also useful in the determination of configuration of *cis* and *trans* isomers²⁷.

The *cis* isomer is favored when Hbonding is otherwise impossible. In other circumstances the *trans* isomer is the stable form²⁸.

The carbonyl peak²⁹ in the 2-alkyl-4thiazolidinone was somewhere around 1680-1740 cm⁻¹, Characteristic N-H stretching¹ was in the range of 3100-3400 cm⁻¹.

NMR spectra

Both ¹H and ¹³C NMR are important so as to confirm the structure of the derivatives and are also useful in regioselective synthesis of isomers. Some articles describe ¹H-NMR spectroscopic study as a method to distinguish between the intramolecular and intermolecular hydrogen bonding in (Z)-2-(5-ethoxycarbonylmethyl-4oxothiazolidin-2-ylidene)-1-phenylethanone, being an example of the thiazolidinone series³⁰.

Ferrocenyl-thiosemicarbazones and their S-methylated derivatives can be used for the synthesis of a variety of novel ferrocenyl-substituted S,N- and N,Nheterocycles The intramolecular S–O and S–N close contact interactions seem to be governing factors in the cyclization reactions of thiosemicarbazone-reagents which is described with the help of ¹³C and ¹H NMR³¹.

A series of substituted 4-thiazolidinones in CDCl₃ were synthesized the chemical shift and C, H spin coupling constants are given³².

Mass Spectra

The molecular ion peaks in the mass spectra of 2-imno-4-oxothiazolidinyl-5acetatehave been assigned³³. Various spirothiazolidinones and fatty acid chain-substituted thiazolidinones were and characterized. In synthesized contrast to spirothiazolidinones in which the parent peaks usually are the base peak, fatty acid chain-substituted thiazolidinones showed very low intensity M⁺ peaks two significant peaks m/z 42 and 43, of comparatively moderate intensity are also observed in the spectra of all the three thiazolidinones³⁴.

N-tryptophyl-4-thiazolidinones and Ntryptophyl-5-benzylidene-4-thiazolidinones were synthesized and possible of fragmentation patterns these compounds by electron impact mass reported³⁵. was All spectrometry compounds have shown the same base peak at m/z 143.

Pharmacological uses of 4-thiazolidinones Anti-HIV activity

The anti-HIV activity of several series of 2,3-diaryl-1,3-thiazolidin-4-ones (Fig.1) has been studied. Which are reported as a new family of antiviral agents acting as NNRTIs with minimal cytotoxicity³⁶⁻³⁸.

Fig. 1: 2,3-diaryl-1,3-thiazolidin-4-ones 2-adamantyl-substituted thiazolidin-4ones (Fig. 2) were synthesized and evaluated for activity against HIV-1 (IIIB) and HIV-2(ROD) in CEM cell cultures, by taking Nevirapine as reference compounds³⁹.

Fig. 2: 2-adamantyl-substituted thiazolidin-4-ones as Anti-HIV agent

Some researchers reported 2-(2,6dibromophenyl)-3-heteroaryl-1,3-thiazolidin-4-one derivatives as shown in the Fig 3. A positive correlation between size of the halogen substituent and HIV-RT inhibitory activity was taken as logic for the synthesis⁴⁰.

Fig. 3: 2-(2,6-dibromophenyl)-3-heteroaryl-1,3-thiazolidin-4-one derivatives

Microwave-assisted synthesis of 2,3diaryl-1,3-thiazolidin-4-ones (Fig.4) was performed in order to achieve striking reductions in reaction times, better yields, cleaner reactions⁴¹.

Fig. 4. Microwave-assisted synthesis of 2,3-diaryl-1,3-thiazolidin-4-ones

Recently prediction of Anti-HIV activity of 1,3,4-thiazolidinone dervatives were made on the basis of QSAR. CoMFA and CoMSIA were the two models used for the analysis. Based on the structures and biodata of previous thiazolidinone analogs, 3D-QSAR studies have been performed with a training set consisting of 96 molecules⁴².

Anticonvulsant activity

Number of articles were found for the anticonvulsant potential of 4thiazolidinones where substitution on 2, 3,5 positions were done. Most of the compounds were found to exhibit protection against pentylenetetrazole seizures⁴³⁻⁴⁸. induced Researchers reported the synthesis, characterization, and anticonvulsant evaluation of new N,N'-bis(arylidene)dihydrazide (Fig. 5) bis(4-thiazolidinone) and (Fig.6) derivatives. Upto 90% protection was observed in the pentylenetetrazole seizure⁴⁹.

Fig. 5: N,N'-bis(arylidene)dihydrazide

Synthesis of newer thiadiazolyl and thiazolidinonyl quinazolin-4(3H)-ones was done in 2002 by *Archana, kumar* A^{50} . The compounds were screened for

their anticonvulsant activity and were compared with the standard drugs, phenytoin sodium, lamotrigine and sodium valproate. Out of the 30 compounds the most active compound was 3-({4-[2-(m-methoxy-hydroxyphenyl) -4-oxo-1,3-thiazolidin-3-yl]-1,3,4-thiadiazol-2-yl}methylamino)-2-methyl-6-bromoquinazolin-4(3H)-one.

Recently anticonvulsant activity of clubbed Thiazolidinone-barbituric acid and Thiazolidinone-triazole derivatives have been reported⁵¹. The compound in (Fig 7), substituted with different phenylthiazolidinonyl amino moieties at the 5 position of barbituric acid, has shown varying degrees of anticonvulsant activity. While 3-(2-chloroacetyl)-2arylimino-5-[(Z)-arylmethylidene]-1,3thiazolan-4-ones on treatment with 5-(1phenoxyethyl)-4H-1,2,4-triazole-3-thiol in identical conditions provided a set of bulkier derivatives which have also shown the anticonvulsant potential (Fig 8).

Antimicrobial activity

Bhoot et al have synthesized 2-(ptolylimino)-3-(4-tolyl)-5-[5'-(3,4dichlorophenyl)-2'-furylidene]-4thiazolidinone (Fig. 9) and derivatives as an antimicrobial agents. compounds were screened in vitro for their antimicrobial activity towards variety of bacterial strains such as B. mega, S. aureus, E. coli, P. vulgaris and fungi such as Aspergillus niger at а concentration of 40 μg. And in conclusion remarkable inhibition was observed compounds in bearing 2-methoxyphenyl, 2-R=phenyl, methylphenyl, 3-methylphenyl 4nitrophenyl substituents⁵².

Fig. 9: 2-(p-tolylimino)-3-(4-tolyl)-5-[5'-(3,4-dichlorophenyl)-2'-furylidene]-4-thiazolidinone

Various 5-substituted 5-(N,N-disubstituted aminomethyl)-2-[(4-carbethoxymethylthiazol-2-yl)imino]-4-thiazolidinones (Fig. 10) were synthesized by *Altintas et al.*

Derivatives were screened for their in vitro antibacterial activity against *Staphylococcus aureus* ATCC 6538, *Staphylococcus epidermidis* ATCC 12228, *Escherichia coli* ATCC 8739, *Klebsiella pneumoniae* ATCC 4352, *Pseudomonas aeruginosa* ATCC 1539, *Salmonella typhi*, *Shigella flexneri* and *Proteus mirabilis* ATCC 14153 using disk diffusion⁵³.

Fig. 10

Desai KG and Desai KR have synthesized five membered sulfurcontaining heterocyclic derivatives 2-(aryl)-3-[2-(benzothiazolylthio)-

acetamidyl]-4-oxo-thiazolidines (Fig. 11). All the compounds have been screened for their antibacterial activity against *Escherchia coli* (Gram–ve), *Staphylococcus aureus* and *Bacillus substilis* (Gram +ve)⁵⁴.

Several derivatives of 2-aroylimino-3arylthiazolidin-4-ones were prepared

and were screened for antimicrobial activity by Saeed A ⁽⁵⁵⁾. The compounds were characterized by spectroscopic techniques and molecular structure is shown in the following figure (Fig. 12).

Fig. 12 : Molecular structure of 2aroylimino-3-arylthiazolidin-4-ones A series of 2-(substituted phenyl)-3-[4-(2,4-dichloro-5-fluorophenyl)-6-(2-thienyl)pyrimidine-2-yl-ureido]-5H/ methyl/carboxymethyl-4-thiazolidinones (Fig. 13) were prepared. All the derivatives screened for were antibacterial activity⁵⁶. Number of other researchers also synthesized and screened 4-thiazolidinone derivatives for antimicrobial potential⁵⁷⁻⁶³.

Fig. 13

Follicle stimulating hormone (FSH) receptor agonist activity

Follicle stimulating hormone (FSH) is a 38 kDa protein that triggers maturation of ovarian follicles in women and spermatogenesis in men. It is released from the anterior pituitary gland, following stimulation by gonadotropinreleasing hormone (GnRH), and serves as the naturally occurring agonist of the FSH receptor.

Yanofsky SD et al. have shown the allosteric activation of FSH receptor, by unbiased combinatorial screening chemistry libraries of thiazolidinone derivatives (Fig. 14), using a cAMPresponsive luciferase reporter assay⁶⁴. They also have shown that discrete modifications in the chemical structure of the thiazolidinone agonists produced with different compounds pharmacological properties⁶⁵. This was done by preparing substituted 5-alkyl⁶⁶, substituted⁶⁷ lactam Gama 4thiazolidinone derivatives.

Fig. 14

Maclean *et al.* reported the FSH agonist activity of an encoded 4-thiazolidinone library⁶⁸. Among the hits discovered in these studies was compound 2-chloro-4-[5-{[2-(3H-inden-1-yl)-ethylcarbamoyl] -methyl}-2-(4-methixyphenyl)-4-oxothiazolidin-3-yl]-benzamide, which possessed moderate FSH receptor agonistic activity⁶⁹.

Anti cancer activity, antiproliferative activity

Ten cytoselective compounds have been identified from 372 thiazolidinone analogues (Fig. 15) by applying iterative library approaches. These compounds selectively killed both non-small cell lung cancer cell line H460 and its paclitaxel-resistant variant H460taxR at an IC50 between 0.21 and 2.93 μ M while showing much less toxicity to human fibroblasts normal at concentrations up to 195 μ M. Α pharmacophore derived from active molecules suggested that two hydrogen bond acceptors and three hydrophobic regions were common features⁷⁰.

Fig. 15

Gududuru have synthesized a series of 2-aryl-4-oxothiazolidin-3-yl amides and were evaluated for ability to inhibit prostate cancer cells. Few potent compounds were detected, which were effective in killing prostate cancer cells with improved selectivity compared to serine amide phosphates⁷¹.

4-thiazolidinone Various derivatives were synthesized for in vitro antiproliferative activity on five cell lines of human colon cancers, obtained from the American type culture collection⁷²⁻⁷⁶.

Thiazolidinone amides, carboxylic acids, serine amides were synthesized and tested for possible anticancer activity⁷⁷.

Anti-inflammatory activity

Sparatore F has synthesized aromatic Schiff bases and 2,3-disubstituted-1,3thiazolidin-4-one derivatives (Fig. 16) as anti-inflammatory agents. Both types of compounds displayed good level of activity against carrageenan induced edema in rat hind paw, while only moderate activity was observed in the writhing test in mice⁷⁸.

Fig. 16

Kumar A have synthesized 3-[4'-(pchlorophenyl)-thiazol-20-yl]-2-[(substituted azetidinone/thiazolidinone)-aminomethyl] -6-bromoquinazolin-4-ones (Fig. 17). Some of the compounds have shown satisfactory anti-inflammatory activity⁷⁹.

A series of 4-thiazolidinone compounds, represented by LY178002 (5-[3,5-bis (1,1-dimethylethyl)- 4- hydroxyphenyl] methylene-4- thiazolidinone), have been described as potent inhibitors of cyclooxygenase and 5-1ipoxygenase, also an inhibitor of phospholipase A 2 and cellular production of LTB4 by human polymorphonuclear leukocytes (PMNL). The results indicate that LY178002 is effective in more suppressing bone damage than the edema⁸⁰.

Ottana *et al* investigated 3,3'-(1,2ethanediyl)-bis[2-aryl-4-thiazolidinone] derivatives, which showed interesting stereo selective anti-inflammatory/ analgesic activities, suggesting that they might preferentially interact with inducible COX-2 isoform⁸¹. Synthesized 2-imino-4-thiazolidinones and 5-arylidene-2-imino-4-thiazolidinones were tested for in vivo anti-inflammatory activity in models of acute inflammation such as carrageenan-induced paw edema and pleurisy assay in rats^{82,83}. All derivatives exhibited significant activity levels. In addition, the ability of such a new class of anti-inflammatory agents to inhibit COX isoform was assessed in murine monocyte/macrophage J774 cell line assay.

Newbould studied the anti-inflammatory of 2-[(butoxycarbonyl) activity methylene]-4-thiazolidinone. The compound was found to be devoid of activity models against most of acute inflammation. However it partially inhibited Carageenan induced edema in the rat and prevented completely the development of secondary lesions in the rats injected with adjuvant in the footpad⁸⁴. Geronikaki AA et al⁸⁵ has performed computer aided discovery of anti-inflammatory potential of 4thiazolidinones by using PASS (Prediction of Activity Spectra for Substances).

CFTR inhibitor

The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated chloride channel, which when mutated can produce the hereditary disease cystic fibrosis. CFTR inhibition is a potential strategy for therapy of secretory diarrheas⁸⁶. Tonghui Ma⁸⁷ have shown that the 4have thiazolidinones also CFTR inhibitory potential. The purpose of the study was to identify high affinity CFTR inhibitors for application to studies of CF disease mechanisms and to the treatment of secretory diarrheas. The primary screening of 50,000 diverse compounds identified a small set of putative inhibitors of the 2-thioxo-4thiazolidinone compound class. These compounds were unrelated structurally to known CFTR activators and to the inhibitors CFTR diphenylamine-2-(DPC). carboxylate 5-nitro-2(3phenylpropyl-amino) benzoate (NPPB) and glibenclamide. The most potent CFTR inhibitor identified by screening of library of structural analogs had a K₁ of about 300nM for inhibition of Cl current in human airway cells. Inhibition was rapid, reversible and voltage dependant.

Sonawane ND⁸⁸, have synthesized thiazolidinone 3-[(3-trifluoromethyl) phenyl]-5-[(4-carboxyphenyl) methylene]-2-thioxo-4-thiazolidinone (CFTRinh-172) which inhibits cystic fibrosis trans membrane conductance regulator (CFTR) chloride channel conductance with sub-micromolar affinity and blocks cholera toxin-induced intestinal fluid secretion. Greatest CFTR inhibition potency was found for 3-CF3 and polar group-substituted-phenyl rings, and a thiazolidinone core. Two compounds with CFTR inhibition potency and solubility >180 lM(>10-fold more than CFTRinh-172) were identified: Tetrazolo-172, containing 4-tetrazolophenyl in place of 4-carboxyphenyl, and Oxo-172, containing thiazolidinedione in place of the thiazolidinone core. The same researchers and their co workers have shown the CFTR inhibitory activity of thiazolidinone derivatives using computational as well as conventional methods^{89,90}.

Miscellaneous uses

Apart from pharmacological applications the 4-thiazolidinones have also been used in synthesis. One of the most older use was in the synthesis of merocyanine dyes which extend the sensitivity of silver halide emulsions to wavelengths within the visible region of the spectrum. Pawelczyk A and Zaprutko L have synthesized the 4-thiazolidinone derivatives by microwave method as a new fragrant substances and unsaturated jasmines⁹¹. analogs of The nwith pentylamine was mixed acetaldehyde. The mixture was stirred at room temperature under condenser. After 1 h ethyl thioglycolate (or thioglycolic acid) was added. Reagents were irradiated for 5 min with 160 W by

microwaves in a flask with condenser and further treated with ethyl acetate.

SCHEME 4: Microwave assisted jasmine analogues.

CONCLUSION

4-The literature reveals that thiazolidinone has diverse biological potential, and the easy synthetic routes for synthesis have taken attention of the chemists. pharmacologists and researchers. The anticancer and anti HIV activities are the most encouraging activities for the pharmacists. Also the research in anticonvulsant. FSH agonistic and CFTR inhibitory activity has given positive results. By the present scenario it can be concluded that 4thiazolidinones have a great potential which remain to be disclosed till date.

REFERENCES

- Frances C, Brown, 4-thiazolidinone. Chem Rev 1961;61:463
- 2. Horton DA, Bourne GT, Smyth ML, The combinatorial synthesis of

Bicycilc privileged structures or privileged substructures. Chem Rev 2003;103: 893.

- Knott EB, The electrophilic reactivity of alkoxyalkilydene derivatives of heterocyclic keto methylene compounds. J Chem Soc 1954; 1482.
- 4. St Laurent DR, Gao Q, Wu DD, Regioselective synthesis of 3-(heteroaryl)-iminothiazolidin-4-ones. Tetrahedron Letters, 2004;45(9): 1907–1910
- Gursoy A, Terzioglu N, Synthesis and isolation of new regioisomeric 4-thiazolidinones and their anticonvulsant activity. Turk J Chem 2005;29:247-254.
- Kato T, Ozaki T, Tamura K, Suzuki Y, Akima M, Ohi N, Novel calcium antagonist with both calcium overload inhibition and anti-oxidant activyt.2. Structure activity relationship of thiazolidinone derivatives. J Med Chem 1999;42:3134.
- Akerblom E, 2-Aminothiazoline-4one and 2-imnothiazolidine-4-one derivatives part II Tautomerism. Acta Chemica Scandinavica 1967;21:1437-1442.
- Singh SP, Parmar SS, Raman K, Stenberg VI, Chemistry and biological activity of thiazolidinones. Chem Rev 1981; 81: 175-203.
- 9. Cunico W et al., One-pot synthesis of 2-isopropyl-3-benzyl-1,3-thiazolidin-

4-ones and 2-phenyl-3-isobutyl-1,3thiazolidin-4-ones from valine, arenealdehydes and mercaptoacetic acid. Tetrahedron letters 2007;48: 6217-6220.

- Akerblom E, 2-Aminothiazoline-4one and 2-imnothiazolidine-4-one derivatives. Acta Chemica Scandinavica 1967;21:843-848.
- 11. Cesur Z, Guner H, Otuk W, Synthesis and antimycobacterial activity of new imidazo[2,1b]thiazole derivatives. Eur J Med Chem 1994; 29,12: 981-983.
- 12. Vicini P, Gerenikaki A, Anastasia K, Incertia M, Zania F, Synthesis and antimicrobial activity of novel 2thiazolylimino-5-arylidene-4thiazolidinones. Bioorg Med Chem 2006;14: 3859-3864.
- Desai KR, Mistry K, Microwave assisted synthesis of nitrogen and sulphur containing heterocyclic compounds and their pharmacological evaluation. Ind J Chem, 2006;45B: 1762-1766.
- 14. Look GC *et al*, The identification of cyclooxygenase-I inhibitors from 4-thiazolidinone combinatorial libraries.
 Bioorg Med Chem Letters 1996; 6,6:707-712.
- 15. Munson MC, Cook AW, Josey JA, Rao C, An efficient high speed synthetic route to amino substituted Thiazolidinone libraries. Tetrahedron Letters 1998; 39:7223-7226.

- 16. Maclean D *et al*, Agonists of the follicle stimulating hormone receptor from an encoded thiazolidinone library. J Comb Chem 2004; 6:196-206.
- 17. Jieping Z, Blanchet J, Reeve's synthesis of 2-imino-4-thiazolidinone from alkyl (aryl) trichloromethylcarbinol revisited, a three-component process from aldehyde, chloroform and thiourea. Tetrahedron Letters 2004; 45:4449–4452.
- Dubreuil JF, Bazureau JP, Efficient combination of task-specific ionic liquid and microwave dielectric heating applied to one-pot three component synthesis of a small library of 4-thiazolidinones. Tetrahedron 2003; 59: 6121-6130.
- Verma A, Saraf SK, 4-Thiazolidinone-A biologically active scaffold. Eur J Med Chem 2007; doi:10.1016/j.ejmech.2007.07.017
- 20. Dandia A, Singh R, Khaturia S, Merienne C, Morgantc G, Loupyd A, Efficient microwave enhanced regioselective synthesis of a series of benzimidazolyl/triazolyl spiro [indole-thiazolidinones] as potent antifungal agents and crystal structure of spiro[3H-indole-3,2'thiazolidine]-3'(1,2,4-triazol-3-yl)-2,4'(1H)-dione. Bioorg Med Chem 2006;14:2409-2417.
- 21. Desai KG, Desai KR, A facile microwave enhanced synthesis of

sulfur-containing 5-membered heterocycles derived from 2mercaptobenzothiazole over ZnCl₂/ DMF and antimicrobial activity evaluation. J Sulfur Chemistry 2006; 27,4:315–328

- 22. Kasmi-Mir S, Djafri A, Paquin L, Hamelin J, Rahmouni M, One-Pot Synthesis of 5-Arylidene-2-Imino-4-Thiazolidinones under Microwave Irradiation. Molecules 2006;11:597-602.
- 23. Erdelyl M, Solid phase methods for the microwave assisted synthesis of heterocycles. Top Heterocyclic Chemistry 2006;1:79–128
- 24. Martins M, Frizzo CP, Moreira DN, Zanatta N, Bonacorso HG, Ionic liquids in heterocyclic synthesis. Chem Rev 2008;108:2015–2050.
- 25. Khovratovich NN, Chizhevskaya II, The problem of the tautomerism of 2-iminothiazolidin-4-one and some of its derivatives. Khimiya Geterotsiklicheskikh Soedinen 1967;3(4):637-641.
- 26. Chizhevskaya II, Zavadskaya MI, Khovratovich NN, synthesis and spectroscopic investigation of some arylazo derivatives of thiazolidin-4one. Khimiya Geterotsiklicheskikh Soedinenii, 1969;5(1):52-55.
- 27. Chizhevskaya II, Khovratovich NN, Kharchenko RS, Investigation of the mobility of methylene group hydrogen atoms in some derivatives of 2-iminothiazolidin-4-one. Khimiya

Geterotsiklicheskikh Soedinenii 1967; 3(4):642-646.

- 28. Popp FD, Rajopadhye MJ, J. Heterocyclic Chem ,1987;24:261
- 29. Taylor PJ, Spectrochim. Acta, 1970;26A:153.
- 30. Fabian B, Kudar V, Csampai A, Tibor Zs. Nagy, Pal Sohar, Synthesis, IR, NMR, DFT and X-ray study of ferrocenyl heterocycles from thiosemicarbazones. Part 21: Study on ferrocenes. J Organometallic Chemistry, 2007; 692:5621–5632.
- Markovi R, Shirazi AZ, Ambaski D, Baranac M, J Serbian Chemical Society, 2003; 68(1):1–7.
- 32. Nagase H, Studies on fungicides XXII. Reaction of dimethyl Acetylenedicarboxylate with Dithiocarbamates, thiolcarbamates, Thiosemicarbazides and Thiosemicarbazones. Chem Pharm Bull 1973; 21: 279-286.
- 33. Nagase H, Studies on fungicides: XXI. Reaction of Dimethyl acetylenedicarboxylate with thioureas. Chem Pharm Bull 1973; 21: 270.
- 34. Nasirullah FA, Osman SM, Derivatization of keto fatty acids: synthesis and mass spectrometry of thiazolidinones. J American Oil and Chemical Society 1982; 59,10,1: 411.
- 35. Lima WT, Lima JG, Gos AJS, Mass spectrometry of some n-tryptophyl-4-thiazolidinone and n-tryptophyl-5benzylidene-4- thiazolidinone

derivatives. Spectroscopy Letters 2002; 35,1: 137–144.

- Monforte P *et al*, Discovery of 2,3diaryl-1,3-thiazolidin-4-ones as potent anti-HIV-1 agent. Bioorg Med Chem Letters, 2001;11:1793–1796.
- 37. Rao *et al.*, Synthesis and anti-HIV activity of 2,3-diaryl-1,3-thiazolidin-4-(thi)one derivatives. IL Farmaco 2002;57:747-751.
- Rao *et al.*, Synthesis of new 2,3diaryl-1,3-thiazolidin-4-ones as anti-HIV agents. IL Farmaco 2004; 59:33-39.
- 39. Balzarini J, Orzeszko B, Maurin JK, Orzeszko A, Synthesis and anti-HIV studies of 2-admantylsubstituted thiazolidine-4-ones. Eur J Med Chem 2007; 42:993-1003.
- 40. Rawal RK *et al.*, Eur J Med Chem 2008, doi:10.1016/j.ejmech. 2007:12.015
- 41. Monforte P *et al*, Microwaveassisted synthesis of benzimidazole and thiazolidinone derivatives as HIV-1 RT inhibitors. ARKIVOC 2004; (v):147-155.
- 42. Ravichandran V, Prashantha Kumar BR, Sankar S, Agrawal RK, Predicting anti-HIV activity of 1,3,4-thiazolidinone derivatives: 3D-QSAR approach. Eur J Med Chem 2008, doi:10.1016/j.ejmech. 2008. 05.036.
- 43. Shyam R, Tiwari RC, Bull Chem Soc of Japan 1972; 49: 171.

- 44. Kumar R, Gupta TK, Parmar SS, J Practical Chem 1970;312: 201.
- 45. Dwivedi C, Gupta SS, Parmar SS, Substituted thiazolidinones as anticonvulsants. J Med Chem 1972; 15:553.
- 46. Parmar SS, Dwivedi C, Chaudhari A, Gupta TK, Substituted thiazolidinones and their selective inhibition of nicotinamide dependant oxidations. J Med Chem 1972; 15:99.
- 47. Malawska B, New anticonvulsant agents. Current Topics in Medicinal Chem 2005;5:69-85.
- 48. Chen *et al.*, Synthesis and biological activity of novel thiazolidin-4-ones with a carbohydrate moiety. Carbohydrate Research 2008;343: 3015-3020.
- 49. Ulusoy N, Ergen N, Ekinci AC, Ozer H, **Synthesis** and anticonvulsant activity of some new 4arylidenehydrazides and thiazolidinones. Monatshefte fur Chemie 1996; 127:1197-1202.
- 50. Archana, Srivastava VK, Kumar A, Synthesis of newer thiadiazolyl and thiazolidinonyl quinazolin-4(3H)ones as potential anticonvulsant agents. Eur J Med Chem 2002; 37: 873-882.
- 51. Shiradkar MR, Nikalje AG, Synthesis and anticonvulsant activity of clubbed thiazolidinone-barbituric acid and thiazolidinone-triazole

derivatives. ARKIVOC 2007; (xiv): 58-74.

- Bhoot DP, Khunt RC, Shankhavara VK, Parekh HH, Journal of Sciences 2006;17(4): 323-325.
- 53. Altintas H *et al.*, Synthesis of Mannich bases of some 2,5disubstituted 4-thiazolidinones and evaluation of their antimicrobial activities. Turk J Chem 2005; 29: 425-435.
- 54. Desai KG, Desai KR, A facile microwave enhanced synthesis of sulfur-containing 5-membered heterocycles derived from 2mercaptobenzothiazole over ZnCl₂/ DMF and antimicrobial activity evaluation. J Sulfur Chemistry 2006; 27(4):315–328.
- 55. Saeed A, Abbas N, Flörke U. J Braz Chem Soc 2007;18(3):559-565.
- 56. Shah TJ, Desai VA, Synthesis of some novel fluorinated 4thiazolidinones containing amide linkages and their antimicrobial screening. ARKIVOC 2007; (xiv): 218-228.
- 57. Mehta PD, Sengar NP, Subrahmanyam EVS, Satyanarayana D, Synthesis and Biological Activity Studies of Some thiazolidinones and azetidinones. Ind J Pharm Sci 2006; 68 (1):103-106.
- 58. Hamed AE, Nadia H. Metwalli, Nagwa MM, Cycloaddition reactions of 5-(2-thienyl) methylene derivatives

of thiazolidinone-4-thiones and their antimicrobial activities. Archives of Pharmaceutical Research 1990; 13(1):5-8.

- 59. Pawar RB, Mulwad VV, Synthesis of some biologically active pyrazole, thiazolidinone, and azetidinone derivatives. Chemistry of Heterocyclic Compounds 2004;40(2):219-226.
- 60. Aly AA, Sayed R, Chem Pap 2006;60 (1): 56-60.
- 61. Vicini P, Geronikaki A, Incerti M, Zani F, Deardenc J, Hewitt M, 2-Heteroarylimino-5-benzylidene-4thiazolidinones analogues of 2thiazolylimino-5-benzylidene-4thiazolidinones with antimicrobial activity: Synthesis and structureactivity relationship. Bioorg Med Chem 2008;16:3714–3724.
- 62. Cacic M, Trkovnik M, Cacic F, Has-Schon E, Synthesis and antimicrobial activity of some derivatives of (7-hydroxy-2-oxo-2*h*chromen-4-yl)-acetic acid hydrazide, Molecules 2006; 11:134-147.
- 63. Vagdevi HM, Vaidya VP, Latha KP, Padmashali B, Synthesis and pharmacological examination of some Thiazolidinone derivatives of Naphto[2,1-b]furan. Indian J Pharm Sci 2006; 68(6): 719-725.
- 64. Yanofsky SD *et al.*, Allosteric activation of the follicle-stimulating hormone (fsh) receptor by selective,

nonpeptide agonists. J Biol Chem 2006;281(19):13226-13237.

- 65. Brian J Arey *et al* Differing pharmacological activities of Thiazolidinone analogs at the FSH receptor. Biochemical and Biophysical Research Communications 2008; 368: 723–728.
- 66. Wrobel J *et al.*, 5-Alkylated thiazolidinones as follicle-stimulating hormone (FSH) receptor agonists, Bioorg Med Chem 2006;14:5729-5741.
- 67. Pelletier JC *et al.*, Preparation of highly substituted gamma-lactam follicle stimulating hormone receptor agonists, Bioorg Med Chem 2005;13:5986–5995.
- 68. Maclean D *et al.*, J Comb Chem 2004; 6:196-204.
- 69. Albanese C *et al.*, Mol Cell Endocrinol 1994;101: 211-219.
- 70. Hongyu Z *et al.*, Design, synthesis, cytoselective toxicity, structure–activity relationships, and pharmacophore of thiazolidinone derivatives targeting drug-resistant lung cancer cells. J Med Chem 2008; 51:1242–125.
- 71. Gududuru V, Bioorg Med Chem Lett 2004;14:5289-5293.
- 72. Dexter DL, Barbosa JA, P. Calabresi, Cancer Res 1979; 39:1020.
- 73. Brattain MG, Fine WD, Khaled FM, Thompson J, Brattain DE, Cancer Res 1981; 41:1751.

- 74. Fogh J, Trempe G, Fogh JI, Human Tumor Cells in Vitro, Plenum Press, New York, 1975:115-119.
- Tompkins WA, Watrach AM, Schmale JD, Schultz RM, Harris JA, J. Natl. Cancer Inst. 1974; 52:1101.
- 76. NCI-Navy Medical Oncology Branch cell line supplement, J Cell Biochem Suppl 1996; 24
- 77. Miller et al., US 2007/ 0155807 A1,
- 78. Vazzana I, Terranova E, Mattioli F, Sparatore F, Aromatic Schiff bases and 2,3-disubstituted-1,3-thiazolidin- 4one derivatives as anti-inflammatory agents. Arkivoc 2004; (v):364-374.
- 79. Kumar A, Rajput CS, Bhati SK, Synthesis of 3-[4 '-(p-chlorophenyl)thiazol-2 '-yl]-2-[(substituted azetidinone/ thiazolidinone)-aminomethyl]-6bromoquinazolin-4-ones as antiinflammatory agent, Bioorg Med Chem 2007; 15: 3089–3096.
- Panetta JA *et al.*, The antiinflammatory effects of LY178002 and LY256548. Agents and Actions, 1989; 27: 300-302.
- 81. Ottana R *et al.*, Eur J Pharmacol 2002;448: 71-80.
- 82. DiRosa M, Willoughby DA, J Pharm Pharmacol 1971;23: 297-298.
- 83. Cuzzocrea S, Zingarelli B, Gilard E, Hake P, Salzman AL, Szabo C, Free Radical Biol Med. 1998;24: 450-459.
- 84. Newbould BB, British J Pharmacology, 1965: 24632.

- 85. Geronikaki AA *et al.*, Computeraided discovery of antiinflammatory thiazolidinones with dual cyclooxygenase/ lipoxygenase inhibition. J Med Chem 2008; 51(6):1601-1609.
- 86. Barrett KE, Keely SJ, Annual Review Physiology 2000; 62: 535.
- 87. Tonghui M *et al.*, J. Clinical Investigation, 2002;110(11):1651-1658.
- 88. Sonawane ND, Verkman AS, Thiazolidinone CFTR inhibitors with improved water solubility identified by structure-activity analysis. Bioorg Med Chem 2008; 16:8187-8195.
- 89. Alessandro Taddei *et al.*, Altered channel gating mechanism for CFTR inhibition by a high-affnity thiazolidinone blocker, FEBS Letters, 2004;558:52-56.
- 90. Hong Yang *et al.*, The Journal of Biological Chemistry, 2003; 278(37):35079-35085.
- 91. Pawe1czyk A, Zaprutko L, Microwave assisted synthesis of fragrant jasmone heterocyclic analogues European Journal of Medicinal Chemistry, 2006;41:586-591.