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ABSTRACT

The key role of aromatase in estrogen biosynthesis has generated enormous interest in putative inhibitors of the enzyme and their use as therapy
against endocrine responsive tumors. In view of significance, QSAR modeling and pharmacophore mapping have been explored to investigate the
structural requirement of isoflavone (Fig 1) derivative for inhibition of aromatase (CYP19) enzyme. The best model generated in classical QSAR
study (R?=0.895, Q2=0.726, R%yrea =0.780) shows that substitutions by electron withdrawing group at atom Ci4 and electron rich group at O1s are
important for promoting the activity. Further molecular ionization potential and steric factors also influence the inhibitory activity to CYP19. 3D
QSAR study of molecular field analysis (R?=0.996, 9?=0.841, R?,.a=0.936) shows the importance of steric and electrostatic fields for the inhibitory
activity. Similarly, molecular similarity analysis (R?=0.997, @?=0.802, R%:.4=0.899) signifies the importance of hydrogen bond acceptor and
hydrophobic features in addition to steric and electrostatic force fields that play role in inhibiting the enzyme. Pharmacophore mapping (@Q?=0.859,
Acost=105.597, R%yrea=0.912) study adjudges the significance of hydrogen bond acceptor and hydrophobic features of the molecule, and 3D distances

among features are critical for the inhibitor activity.
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INTRODUCTION

Breast cancer is the second leading cause of cancer death in women
in the United States. About 180,000 women in the United States are
found to have invasive breast cancer in 2007!. The role of
endogenous estrogen in the development of breast cancer has long
been recognized? and estrogens are known to play pivotal role in the
proliferation of cancer cells3. Aromatase enzyme* catalyzes the rate
limiting step in estrogen biosynthesis®. On aromatization of A-ring of
androgen to form the phenolic A-ring (characteristic feature) of
estrogen with concomitant loss of 19-angular methyl group®78. Thus
inhibition of aromatase enzyme is an attractive target for the
endocrine treatment of hormone dependent breast cancer®. Some
third generation aromatase inhibitors (Als), exemestane, letrozole
are presently in use for breast cancer treatment. On the basis of their
inhibitory mechanisms, these molecules are divided!? into two
classes: (1) irreversible steroid inactivators such as formestane or
exemestane that bind covalently to the enzyme, and (2) non-
steroidal inhibitors such as letrozole or anastrozole that act as
reversible competitive inhibitors.

Developments in the design of new Als could be obtained through
computer aided drug designing (CADD)  techniques.
Computational/molecular techniques or chemometric studies can
gift us molecules with optimistic efficacy. CADD is categorized into
target protein- and small molecule (ligand) - based approach.
Process initiation from hits or leads range from pharmacophore or
multidimensional quantitative structure activity relationship (QSAR)
models and binary scoring to compound clustering and statistical
techniques capable of analyzing datasets and deriving predictive
models of bioactivity. The importance of all three processes is on
resource management and minimization of animal sacrifice.

Molecular modeling studies have been performed on various non-
steroidal Als!1121314 to explore their pharmacophore. The studies
showed the importance of intrinsic molecular hydrophobicity and
hydrogen bond acceptors for inhibitory activity. In the present
modeling study, isoflavone derivatives!> (Fig 1) are explored to
derive the pharmacophore/structural requirement for inhibiting
aromatase activity using quantitative structure activity relationship
(QSAR) and space modeling studies. QSAR studies are used to
develop statistically validated models that give structural
explanation towards activity. The popular 3D QSAR methods,

Comparative Molecular Field Analysis (CoMFA)1617 and Comparative
Molecular Similarity Analysis (CoMSIA)81? involve the generation of
a common 3D lattice around a set of molecules. COMFA accomplishes
the calculation of the steric and electrostatic interaction energies at
the lattice points, whereas CoMSIA uses similarity functions
represented as Gaussian. The information around the molecule are
transferred into numerical data using the partial least squares
(PLS)?° method that reduces the dimensionality of data by
generating components that can correlate with bioactivity. On the
other hand, space modeling study generates a pharmacophore
hypothesis?!, which is a set of functional group/fragment types in a
spatial arrangement that represent the interaction made in a
common scaffold by a set of small molecular ligands with a protein
receptor. The pharmacophore concept is based on the kinds of
interaction observed in molecular recognition and alternatively can
be used as a query in a 3D database search to identify new structural
classes of potential lead compounds, and it can serve as a template
for generating alignment for 3D QSAR analysis.

MATERIALS AND METHODS

The molecular dataset'> (Table 1) is randomly divided into training
(Tr) and test (Ts) sets for the study. The CYP19+4 inhibitory activity
(ICso, uM) has been considered as biological activity and
implemented as logarithmic function, pICso (logi101000/ICso) for
modeling purpose. The objective of the work is to generate
relationship between structure and corresponding activity through
QSAR studies and deduce a pharmacophore map through receptor-
independent space modeling technique?!. Multiple linear regression
(MLR)22 and PLS20 techniques are applied for QSAR studies.

QSAR Study

3D structure of molecules are minimized in MOPAC using AM1
method to locate their global minima conformers and subsequent
calculation of different molecular properties, such as
physiochemical, electronic, topological, and spatial and structural
features are estimated for classical modeling?3. The partial charge is
calculated using the Extended Huckel approach?¢, and E-state
index?> of all the atoms (Fig 1) are generated using a JAVA-based
program?é, while other descriptors are generated using Chem3D
Pro24, CAChe?’ and TSAR28. MLR is performed using standard and
forward stepwise regression techniques?2.
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Table 1: Structural features and inhibitory activity of Isoflavone derivatives

Compd no R1 Rz R3 ICso (UM) pICso
1 H Benzyl 4'-Pyridyl-thio 0.210 3.678
2 H 2'-Nitrophenylmethyl 4'-Pyridyl-thio 0.138 3.860
3% H 3'-Nitrophenylmethyl 4'-Pyridyl-thio 0.113 3.947
4 H 4'-Nitrophenylmethyl 4'-Pyridyl-thio 0.132 3.879
5 H a-Naphthylmethyl 4'-Pyridyl-thio 0.112 3.951
6 H B-Naphthylmethyl 4'-Pyridyl-thio 0.090 4.046
7*# H Benzyl 4'-Pyridyl-thio 0.359 3.445
8 H 2'-Methoxy-phenylmethyl 4'-Pyridyl-thio 0.243 3.614
9 H 4’-Methoxy-phenylmethyl 4'-Pyridyl-thio 0.161 3.793
10 H Cyclohexylmethyl 4'-Pyridyl-thio 0.553 3.257
11 H 4'-Flurophenylmethyl 4'-Pyridyl-thio 0.337 3.472
12+ H 4'-Bromophenylmethyl 4'-Pyridyl-thio 0.213 3.672
13 H 4'-Chlorophenylmethyl 4'-Pyridyl-thio 0.233 3.633
14 H 4'Biphenylmethyl 4'-Pyridyl-thio 0.079 4.102
15 H 2'-Pyridylmethyl 4'-Pyridyl-thio 0.378 3.423
16* H Methyl Imidazol-1-yl 0.770 3.114
17 OMe Methyl Imidazol-1-yl 2.000 2.699
18 H Benzyl Imidazol-1-yl 0.520 3.284
19 H Methyl 1H—1,2,4-triazol-1-yl 18.000 1.745
20%# H Methyl (4'-pyridyl)methyl-thio 1.600 2.796
21 H Methyl (3'-pyridyl)methyl-thio 9.200 2.036
22 H Methyl (2'-pyridyl)methyl-thio 3.000 2.523
23# Me Methyl (4'-pyridyl)methyl-thio 3.100 2.509
24 H OH (4'-pyridyl)methyl-thio 0.610 3.215
25 H OH (4'-pyridyl)methy-thio 3.600 2.444
26 OH OH (4'-pyridyl)methyl-thio 0.280 3.553
27 OMe OH (4'-pyridyl)methyl-thio 0.220 3.658

*Ts set compounds for QSAR studies
#Ts set for compounds pharmacophore study

QSAR model origination is accomplished by correlation analysis
using Statistica?, and the statistical parameters of the regression
equation considered are R? (correlation coefficient), EV (explained
variance), F (variance ratio), df (degree of freedom), se (standard
error of estimate), and AVRES (average of absolute values of
calculated residuals). Leave-one-out (LOO) cross-validation3? is
performed to obtain Q2 (cross-validated variance).

Fig. 1: General structure of isoflavone molecular scaffold with
atoms considered for alignment are marked as *

3D-QSARs, CoMFA and CoMSIA models permit an understanding of
steric (s) and electrostatic (e)3!, lipophilic/hydrophobic (p)3% and
hydrogen bond (HB) acceptor (a) and donor (d) requirements for
ligand functionality. The structural variation in the Tr set that gives
rise to variation in the molecular fields at particular regions of the
space are correlated to the biological property. In both cases
conformers are generated by simulated annealing technique33. The
molecules are heated at 700 K for 1000 fs and annealing is done at
200 K for 1000 fs. Partial atomic charges are calculated by the
Gasteiger-Huckel method34 and energy minimization are performed
using the Tripos force field353¢, Both CoMFA and CoMSIA studies
provide presentable models when database alignment of molecular
conformer is done on a template. In the present study, the most
active compound (ICs50=0.079 uM) is selected as template and points
are defined as shown in Fig 1. PLS approach?? is used to derive the
3D QSAR models in which field and similarity factors are the
independent variables and inhibitory activity (pICso) being the
dependent variable.

Pharmacophore space modeling study

Pharmacophore mapping of isoflavone derivatives as Al is
accomplished by Catalyst3”. The chemical features optimized for
exploring this spatial pharmacophore map?2! of this group of
compounds are HB ‘a’ and ‘d’, ‘p’, and ring aromatic (r). The different
control parameters employed for hypothesis generation (hypogen
process) are uncertainty and weight variation, and each feature
signifies some degree of magnitude of the compound’s activity. The
hypothesis also estimates the cost of null and fixed hypotheses. The
greater the difference between the fixed and the null costs, it is more
likely that the hypothesis does not reflect a chance correlation.
Further the closer the value of total cost to the fixed cost, better the
hypothesis as it is more towards the ideal hypothesis. The minimum
difference between the total and null costs is taken as 60 bits for a
hypothesis optimization38. The quality of hypothesis is further
adjudged through a cross-validation technique using CatScramble
based on Fischer’s randomization test?2, where the biological
activity data are randomized within a fixed chemical data set and the
hypogen process is initiated. By logic, the hypothesis generated
prior to scrambling should be better to attest for a good
pharmacophore model.

RESULTS AND DISCUSSION
QSAR study

Classical QSAR modeling of isoflavone derivatives (Fig 1) for CYP19
aromatase inhibition has derived the best single variate model with
shape factor (Kappa index)3? that can explain 65.5% variance in
activity, and the statistical quality of the relation is estimated to be

R?=0.671, se= 0.387, n=23

And in the case of a bivariate relationship, the best significant
relationship has been explored with the same shape factor and e-
state index?* of atom Oss, that explained 83.7% variance in activity.
The quality of this relationship has been estimated to be

R?=0.852, se= 0.266, n=23
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But, the best linear QSAR model of isoflavone derivatives for CYP19
inhibition has been deduced to be

pICso= 0.871 (£ 0.336)IP + 0.039( % 0.003)MR - 0.853(+ 0.261)S1

+0.119(+0.027)S1s - 8.708(+ 3.084)
Model [1]

Where, IP is ionization potential#, MR is molar refractivity*!, Si+ and
Sis are e-state indices?* of atoms Ci4 and O1s (Fig 1) respectively. The
independent variables used in the model are not inter-correlated (R
< 0.5). The statistical quality of the model is

n=23; Re=0.895; EV=87.10%; F=38.180; df=4,18; se=0.237;
AVRES=0.173; PRESS=2.655; 0?=0.726; R?prea = 0.780 (Ts set).
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The model is accounted for more than 87% variance in observed
activity with cross-validated variance (CVV)?° of 72%. The observed
vs predicted activity as per model (1) is depicted in Fig 2.

The model deduced that ionization potential has a positive
contribution, suggesting that molecular substitutions that lead to
increase in ionization potential of the molecule may favor the
activity. Further the positive contribution of MR indicates that steric
property of the molecule is favorable for the activity. The negative
contribution of Sis indicates that low e- density at position Cis4 is
favorable, whereas positive contribution of Sis denotes that high
electron density at position O1s favors the activity. Thus electron
withdrawing substituent at Ci4, and group/substitutent that imparts
more electron density at O1s increase inhibitory activity.

4.2 ~ o
4.0
3.8
3.6 o
@ 3.4
g 32 oL Tr QSAR
3 3.0 ® Ts QSAR
2.8 “O. Tr CoMFA
26 B Ts CoMFA
24 “A. Tr CoMSIA
: A Ts CoMSIA
22 > Tr Pharmacophore
2.0 € Ts Pharmacophore
1.8 .Sm/’
1.6 =
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Predicted (pICsg)
2D QSAR model, Tr: n=23, R?=0.895, se=0.212, Q?=0.726; Ts:n=4, R?=0.780, se=0.282
CoMFA model, Tr: n=23, R?=0.996, se=0.051, Q?=0.841; Ts:n=4, R?=0.936, se=0.166
CoMSIA model, Tr: n=23, R?=0.997, se=0.040, Q?=0.802; Ts: n=4, R?=0.899, se=0.244
Pharmacophore model, Tr: n=22, Q?=0.860, rmsd=1.344; Ts: n=5, R?=0.912, se=0.205
Fig. 2: Observed vs predicted activity as per models.3D QSAR studies
Table 2: Results of COMFA and CoMSIA studies
CoMFA Components n R2 se F-value RZ%ey sep R2ps sd Contribution
(df) s e
s 6 23 0994 0.059 454.513 0.886 0.262 0.997 0.002 1.000
(6,16)
e 6 23 0985 0.093 180.697 0479 0.542 0986 0.007 1.000
(6,16)
s+e 6 23 0996 0.051 615.975 0.841 0309 0.998 0.002 0.608 0.309
(6,16)
CoMSIA Components n R? se F-value RZ%ey sep R2ps sd Contribution
(df) a d p s e
a 2 23 0713 0415 6.635 0446 0.516 0.787 0.079 1.000
(2,16)
d 6 23 0.098 0.735 0.291 - 0.783 - - 1.000
(6,16)
p 6 23 0991 0.072 306.392 0.791 0.354 0.996 0.002 1.000
(6,16)
s 6 23 0982 0.104 146.353 0.756 0.383 0.989 0.009 1.000
(6,16)
e 6 23 0978 0.115 118.629 0.627 0.459 0.996 0.003 1.000
(6,16)
s+e 6 23 0995 0.054 552.063 0.822 0.327 0.997 0.003 0.405 0.595
(6,16)
s+e+a 6 23 0994 0.059 457.482 0.818 0.331 0.997 0.003 0.121 0.367 0.513
(6,16)
a+s+p 6 23 0998 0.039 1065.060 0.828 0.321 0991 0.003 0.164 0.543 0.293
(6,16)
s+e+p 6 23 0995 0.056 504.250 0.797 0.349 0.998 0.001 0.381 0.243 0.376
(6,16)
atp+ste 6 23 0997 0.040 982.290 0.802 0.344 0999 0.001 0.109 0.336 0.218 0.337
(6,16)

s = Steric, e = Electrostatic, AlogP = Hydrophobicity, S1s=E-state indices at O1s, a=acceptor, d=donor, p=hydrophobicity

n=number of compounds in set, R? = Non-cross validated R?, se = Standard error of estimate, RZ.,= Cross-validated R? by LOO method, sep = Standard

error of prediction, R?%s = Bootstrap R?, sd = standard deviation
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The best models for COMFA and CoMSIA studies are characterized
on the basis of maximum RZ., F-value and R%; (Table 2). The best
CoMFA model (Fig 3) is obtained with ‘s’ and ‘e’ fields exhibiting
60.8% and 39.2% contributions for the activity respectively. The
model generated R? of 0.996 with se of 0.051, Q2 of 0.841 with 6
components and standard error of prediction of 0.309, F-value of
615.975 and R?s (bootstrap) is 0.998. The model also showed good
predictivity (RZ2prs=0.936) for Ts set compounds. The predicted
activity of the model is described in Fig 2 and mapped features are
illustrated in Fig 3.

The contour maps of COMFA model depicted green (steric favorable)
and blue (electrostatic favorable) colors at 80% level of
contribution, while yellow (steric unfavorable) and red colors
(electrostatic unfavorable) show 20% level of contribution. The

Int ] Pharmacy and Pharm Sci, Vol 2, Issue 3, 126-131

green contour suggests that presence of bulky substituents in the
region favor activity, whereas presence of bulky substituent
exhibiting steric influence in the yellow region is unfavorable for
activity. Blue and red contours suggest the presence of positive
charged substituents and negative charged groups favor the activity
respectively. The model indicates that substitutional pattern at O1s
(Fig 1) that imparts steric influence on that atom (O1s) is favorable,
though steric influence in the vicinity of that substituent is
unfavorable for the activity. Negative charge field at O1s and positive
charge fields in the vicinity of atoms Ci3 and Cis4 are favorable for
activity. Further substitutional pattern at Rz that provides more
electrostatic force field increases activity, but other sub-
substitutional pattern at Rs is favored by negative charge fields. The
steric influence is unfavorable near atoms Cs and Co region.

Fig. 3: Mapped features of most active compound (IC50=0.0792M) in COMFA model.

Steric: Green favorable, yellow unfavorable; Electrostatic: Blue favorable, red unfavorable

The best CoMSIA model (Fig 4) has been derived with ‘@’, ‘p’, ‘s’ and
‘e’ fields that promote 10.9, 33.6, 21.8 and 33.7% contribution
respectively to the activity. The regression coefficient (R?) and error
(se) of the model are 0.997 and 0.040 respectively, cross-validated
coefficient (Q?) of 0.802, error of prediction is 0.344 with 6

components, F-value of 982.290, R? is 0.999 with error of 0.001.
The model further showed good predictivity (R2y.s=0.899) for Ts set
compounds. The contour maps are illustrated in Fig 4 and predicted
activity is delineated in Fig 2.

Fig. 4: Mapped features of most active compound in CoMSIA model.

Acceptor: Purple favorable, magenta unfavorable; Steric: Green favorable, yellow unfavorable; Hydrophobic: Cyan favorable, orange unfavorable;

Electrostatic: Blue favorable, red unfavorable

The model indicates purple (80%, favorable) and magenta (20%,
unfavorable) colors for acceptor (a) and reveals that Ri and Rs
substituents are unfavorable as acceptors. Cyan (80%, favorable)
and orange (20%, unfavorable) color contours represent
hydrophobicity (p). Presence of substituents at Ois and Cs can
impart hydrophobicity of the molecule that favors activity, but sub-
substitutional pattern on both those positions may unfavor for
imparting hydrophobicity. Similarly substitutional pattern at R is
also unfavorable to impart hydrophobicity. For steric (s) and
electrostatic (e) fields, similar results have been observed as with
CoMFA model. The steric contours suggest that substitution at O1s
that imparts steric property favors the activity, but other sub-
substitutional pattern in molecular scaffold is unfavorable to impart
steric property. The electrostatic contours indicate that positive
charge substitutions at Cs and Cis favor activity, whereas Cs itself
bearing negative charge is favorable for the activity. The model
concludes that substitution at O1s that imparts steric property and
behaves as hydrophobic region favor activity. Steric influence in
regions of Cs and Cy is unfavorable for activity. Cs itself imparts
negative charge and substitutional pattern on that atom (Cs) brings

hydrophobicity, both favor activity. Positive charge substitutions at
position Cis, and at Cs (R3) and Cis (R1) favor activity. Presence of HB
acceptors at Ri and Rs shows negative influence on inhibitory
activity.

Pharmacophore space modeling study

The result of the study is delineated in Table 3. The best hypothesis
is characterized on the basis of highest cost difference
(Acost=105.597), root mean square deviation (rmsd=1.344), best
correlation (Q?=0.859) and test set prediction (R?pres=0.912). The
mapped pharmacophore features of isoflavone derivative as CYP19
inhibitor are depicted in Fig 5. The best hypothesis demonstrated
more than 92% correlation with the inhibitory activity to CYP19 and
depicted that HB acceptor (a) and two hydrophobic (p) features
might function as prime biophore for activity. The quality of the
hypothesis is further adjudged through a cross-validation technique
using Fischer’s randomization test [22] at 99% confidence level and
no other hypothesis generates better parameters than selected
hypothesis. The predicted activities of the Tr and Ts sets are listed in
Fig 2.
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Table 3: Hypothesis parameters observed in Catalyst pharmacophore study

Run  Uncer- Weight Spacing Config. Pharmacophore Cost Q2 rmsd
No. tainty variance (pm) features in

generated Null Fixed Total Acost

hypothesis
1 2 0.302 300 18.164 a,pp 112.736  83.155 90.138 22.598 0.859 0.791
2 2 2 300 18.164 apr 112.736 84.101 93.666 19.070 0.805 0.929
3 2 0.302 400 18.610 a,pp 112.736  83.605 90.264 22472 0.874  0.748
4 2 2 400 18.610 p,p I, 112.736  84.551 90.098 22.638 0.885  0.709
5 2 0.302 200 17.131 a,pp 112.736  82.123 89.173 23.563 0.867 0.772
6 2 2 200 17.131 appr 112.736  83.068 92.694 20.042 0.803  0.935
7 1.5 0.302 300 18.260 a,pp 194.888 71.456 90.859 104.029 0.870 1.294
8 1.5 2 300 18.260 a,pr 194.888  72.401 93.409 101.479 0.852  1.381
9 1.5 0.302 400 18.709 a,pr 194.888 71.904 93.973 100915 0.880 1.263
10 1.5 2 400 18.709 a,pp 194.888 72.850 91.668 103.220 0.867 1.307
11 1.5 0.302 200 17.297 p,I,I, T 194.888 70.493 90.382 104.506 0.867 1.313
12 1.5 2 200 17.297 a,pp 194.888 71.438 91.218 103.670 0.861 1.340
13 1.5 0.302 500 15.987 a,pp 194.888 69.183 89.291 105.597 0.859 1.344

Input features: a, p, 1; a: HB acceptor, p: Hydrophobic, r: Ring aromatic, Acost = Null cost - total cost; rmsd = rms deviation; n = 22.

The mapped pharmacophore indicates that functional heteroatom,
011 behaves as promising HB acceptor that probably binds with the
receptor by hydrogen bond. Presence of hydrophobic zones around
atoms Ois and Cs bring the compound more active, which can be

adjudged with the observation of CoMSIA study. The critical inter-
feature distances in 3D space of molecule impart selective CYP19
aromatase inhibition.

Fig. 5: Mapped features of most active compound in the pharmacophore model.

a: acceptor (green) and p: hydrophobic (sky blue)
CONCLUSION

In the present study, 2D/3D QSAR modeling and pharmacophore
mapping studies have been performed for isoflavone molecular
scaffold, identifying descriptors that contribute to biological activity,
and search for pharmacophore elements responsible for inhibitory
activity. The studies indicated that high electron density at Ois that
imparts steric property and presence of substituent brings
hydrophobicity of the molecule favor activity. Positive charge field
with low electron density at Ci4 also favor activity. Steric influences
in regions of Cs and Co are unfavorable for activity. Positive charge
substitutions at Ri and Rs favor activity. Negatively charged
substitution at Cs (Rs), which also shows hydrophobicity, favors
activity. But presence of HB acceptors at R: and Rz show negative
influence on inhibitory activity. Keto functional groups (011 and O1s)
behave as promising HB acceptors that might interact with receptor
residue. lonization potential and molar refractivity also contribute
for promoting activity.
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