INTRODUCTION

Aflatoxins, a group of secondary metabolites produced by certain fungal species are known to contaminate items of culinary importance. Aflatoxin is not only contaminating our food stuffs, but also found in edible tissues, milk and eggs after consumption of contaminated feed by farm animals\(^1\). AFB\(_1\) is well known to be potent mutagenic, carcinogenic, immunosuppressive, teratogenic and also induced several metabolic activities, causing liver, kidney and heart damage\(^2,3\). These toxins have been incriminated as cause of high mortality in livestock and some cause death in human being\(^4\). The toxicity and carcinogenicity of AFB\(_1\) has been extensively studied and thought to be directly linked to its bioactivation by hepatic cytochrome P\(_{450}\) enzyme system, that results the formation of highly reactive intermediate AFB\(_1\)-8,9-epoxide. This intermediate subsequently bind to nucleophilic sites of DNA and major adduct 8,9 dihydro-8-(N\(^7\)guanyl)-9 hydroxy-AFB\(_1\) (AFB\(_1\)-N\(^7\)-Gua) is formed\(^5\). The formation of AFB\(_1\)-DNA adducts is a critical step in the initiation of AFB\(_1\)-induced carcinogenesis\(^6\). Although the mechanism underlying the toxicity of aflatoxin is not fully understood, several reports suggests that toxicity may ensue through the generation of intracellular reactive oxygen species (ROS) like superoxide anion, hydroxyl radical and hydrogen peroxide (H\(_2\)O\(_2\)) during processing of AFB\(_1\) by cytochrome P\(_{450}\) in the liver\(^7\). These species may attack soluble cell compounds as well as membrane, eventually leading to the impairment of cell functioning and cytolsis\(^8\). Damage of hepatocytes and the nephrocytes is believed to be the results of this process.

The use of synthetic chemicals has greatly contributed to management of such damage, but indiscriminate application of chemicals has led to a number of ecological and medicinal problems due to residual toxicity, teratogenicity, carcinogenicity, hormonal imbalance, spermatotoxicity etc\(^9\). Interest in medicinal plant burgeoned by the increased efficiency of new plant-derived drugs and growing interest in natural products. The use of plants as medicines dates to the dawn of history\(^10\). Medicinal plants serves as therapeutic alternative, super choice, or in some cases, as only effective treatments.

Among the promising medicinal plants \(T.\) cordifolia (Menispermaceae) is an amazing herb with rich historical background. It is widely used in Indian Ayurvedic medicine as a tonic, vitalizer and as a remedy for metabolic disorders\(^11\). Previous studies showed that the plant posses antidiabetic\(^12\), immunomodulatory\(^13\), hepatoprotective\(^14\) and antipyretic\(^15\) activities. Some authors have reported that \(T.\) cordifolia roots possess antiulcer\(^16\) and antistress\(^17\) activities.

There are no available reports on the antioxidant action of \(T.\) cordifolia roots on aflatoxicosis. Therefore we made an attempt to evaluate the antioxidant property of an ethanol extract of \(T.\) cordifolia root in aflatoxin induced toxicity intoxicated mice kidney.

MATERIALS AND METHODS

Chemicals

Crystalline AFB\(_1\) (from \(A.\) flavus), purchased from HIMEDIA (India). All other chemicals used were of analytical grade and obtained from SD fine chemicals (Mumbai, India), SRL (India), CDH (India) and Qualigen (India/Germany).

Animals

Healthy male Swiss albino mice (\(M.\) musculus) were procured from Haryana Agricultural University; Hisar (Haryana, India).The animals were housed under standard laboratory conditions of light (12 h light-dark cycle), temperature (25±2°C), humidity (55 ± 5 %) and fed with Standard mice pellet diet (Hindustan Liver Limited, India) and tap water ad libitum in animal house of Banasthali University according to internationally accepted principle. A prior approval was obtained from the institutional animal ethics committee for the study protocol. After 1 week of acclimatization mice were used for experimental purpose. Only male mice were used because previous studies have indicated that these were more sensitive to aflatoxin treatment than female.

Preparation of Aflatoxin B\(_1\) and ethanolic extract of \(T.\) cordifolia

Crystalline aflatoxin B\(_1\) was dissolved in dimethylsulfoxide and further diluted with distilled water to the required concentration. The final gavage solution of AFB\(_1\) contained 1% dimethyl sulfoxide.

The experimental plant material was collected from Krishi Vigyan Kendra, Banasthali University; India. It was identified as \(T.\) cordifolia by a plant taxonomist of our department and its sample has been preserved and documented in the herbarium of our University. The hanging aerial roots were washed thoroughly with...
distilled water and shade-dried. Ethanolic extract of the dried roots of *Tinospora cordifolia* was prepared by soxhlet method using 300ml ethanol for 50g (dry weight) of dried root powder. The ethanolic extract thus obtained was dried under reduced pressure at a room temperature not exceeding 40º C to get a yield of 7% from the crude extract. The extract devoid of alcohol, was used for required concentration.

Experimental design

Sixty adult male Swiss albino mice (Mus musculus) weighing 30±5 g were placed in two groups of 12 and 48 mice each and were administered orally by gavage, once daily as below, for 25 consecutive days. The groups were as follows:

- **Group I** - Control (Normal saline, 0.9%)
- **Group II** - Aflatoxin B1 (AFB1) 2µg/30 g b.wt

After 25 days, aflatoxin-exposed mice were divided into four groups of 12 mice each and were given following treatments orally by gavage, once daily for 20 consecutive days.

- **Group II A** - No treatment
- **Group II B** - *T.cordifolia* (Root) 50 mg/kg b.wt
- **Group II C** - *T.cordifolia* (Root) 100 mg/kg b.wt
- **Group II D** - *T.cordifolia* (Root) 200 mg/kg b.wt

The doses of Aflatoxin and plant extract were decided on the basis of previously published reports with some modifications. The mice from each group were sacrificed by cervical dislocation after post exposure therapy. Kidney sample from the sacrificed mice were quickly removed and cleaned to make them free from extraneous material and perfused with ice-cold saline for biochemical and histopathological evaluation. Post-mitochondrial supernatant (PMS) was prepared using method of Mohandas et al. with some modifications. The various biochemical variables viz., lipid peroxidation, superoxide dismutase, catalase, glutathione-S-transferase, reduced glutathione, glutathione peroxidase, glutathione reductase, ascorbic acid and protein level were determined. Histopathological evaluation of kidney tissue was done according to the method of Luna.

Statistical analysis

The results are expressed as mean ± standard error (S.E.M.). Statistical significance between the different groups was determined by one way analysis of variance (ANOVA) using the SPSS software package. Post hoc testing was performed for inter-group comparisons using the Tukey multiple comparison test. The level of significance was set at p<0.05.

RESULTS

Table 1 shows the biochemical status of animals, i.e., level of LPO, SOD, CAT, GSH, GST, GPx, AR, ascorbic acid and protein content. The renal LPO level was significantly increased (P<0.01) whereas SOD, CAT, GSH, GST, GR, GPx, ascorbic acid and protein level were significantly decreased (P<0.01) in aflatoxin treated group than that of control group (group I). When post exposure therapy was done for 20 days after AFB1 exposure, it was found that all plant doses (low, medium and high) showed significant increased (P<0.01) in the activity of CAT, SOD, GST, and GSH when compared with aflatoxin administered group (group IA). Group IIB and group IID showed GPx and GR activity comparable to aflatoxin alone receiving group but group IIC showed significant improvement (P<0.01) in the activity of these enzymes as compared to that of aflatoxin intoxicated mice. The level of LPO was significantly decreased (P<0.01) in group IIB and IIC mice whereas group IID mice also showed significant increased in this enzyme but at P<0.05 significant level than that of group IIA mice. The ascorbic acid concentration was significantly elevated (P<0.05) in only group IIC mice whereas as it was comparable to aflatoxin receiving group in group IIB and group IID. The mean values of protein was enhanced significantly (P<0.05) in group IIB and group IID mice however it also showed significant improvement in group IIC mice but at P<0.01 level.

Cross section of kidney of mice treated with AFB1 and RTc (40X).

Kidney From Control mice (a) to which normal saline was given for 45 days shows normal glomerulus and tubules in the cortical area whereas kidney of mice to which no treatment was given for 20 days after 25 days of aflatoxin administration (b) shows vacuolation and necrosis of tubular epithelial cells. Kidney section of mice to which RTc (50) was given for 20 days after 25 days of aflatoxin administration (c) shows normal glomerulus and tubules in the cortical zone whereas kidney section of mice to which RTc (100) was given for 20 days after 25 days of aflatoxin administration (d) the section shows normal glomerulus and tubules. Section of kidney of mice to which RTc (200) was given for 20 days after 25 days of aflatoxin administration (e) shows a congested glomerulus and tubules.
Table 1: Effect of ethanolic RTc extract on non-enzymatic, enzymatic parameters and level of TBARS in the kidney of mice treated with aflatoxin B1 during post exposure therapy

<table>
<thead>
<tr>
<th>Parameters (mM of TBARS h−1g−1tissue)</th>
<th>Control (Group I)</th>
<th>AFB1 (Group IIA)</th>
<th>AFB1+RTc(50) (Group IIB)</th>
<th>AFB1+RTc(100) (Group IIC)</th>
<th>AFB1+RTc(200) (Group IID)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPO</td>
<td>8.37±0.22</td>
<td>18.61±1.71</td>
<td>15.45±0.58</td>
<td>14.48±1.10</td>
<td>16.40±0.95</td>
</tr>
<tr>
<td>SOD</td>
<td>12.42±0.12</td>
<td>5.53±0.08</td>
<td>7.31±0.14</td>
<td>7.55±0.05</td>
<td>7.26±0.02</td>
</tr>
<tr>
<td>CAT</td>
<td>83.15±1.71</td>
<td>47.55±1.83</td>
<td>56.84±1.71</td>
<td>59.50±1.97</td>
<td>53.3±2.33</td>
</tr>
<tr>
<td>GST</td>
<td>267.57±3.84</td>
<td>164.80±3.56</td>
<td>251.72±3.66</td>
<td>258.66±2.24</td>
<td>248.91±3.61</td>
</tr>
<tr>
<td>GPx</td>
<td>166.69±1.60</td>
<td>106.34±1.60</td>
<td>123.09±2.24</td>
<td>126.08±2.43</td>
<td>120.62±1.51</td>
</tr>
<tr>
<td>GR</td>
<td>24.04±1.33</td>
<td>15.77±1.00</td>
<td>17.23±0.78<sup>NS</sup></td>
<td>18.58±1.03</td>
<td>17.17±0.69<sup>NS</sup></td>
</tr>
<tr>
<td>Abc</td>
<td>140.96±2.48</td>
<td>123.31±1.31</td>
<td>126.14±2.22<sup>NS</sup></td>
<td>128.92±1.55</td>
<td>124.44±1.39<sup>NS</sup></td>
</tr>
<tr>
<td>Protein (mg g−1fresh wt)</td>
<td>5.74±0.04</td>
<td>3.96±0.08<sup>b</sup></td>
<td>4.33±0.04<sup>NS</sup></td>
<td>4.83±0.06<sup>d</sup></td>
<td>4.11±0.06<sup>NS</sup></td>
</tr>
<tr>
<td>GST</td>
<td>51.17±3.70</td>
<td>34.65±1.63</td>
<td>39.29±1.76<sup>a</sup></td>
<td>40.30±1.15<sup>a</sup></td>
<td>38.56±1.17<sup>a</sup></td>
</tr>
</tbody>
</table>

Abbreviations: - AFB1, Aflatoxin B1; Asc, Ascorbic acid; CAT, Catalase; GPx, Glutathione peroxidase; GR, Glutathione reductase; GSH, Reduced Glutathione; GST, Glutathione-S-transferase; LPO, Lipid peroxidase; RTc, Root of Tinospora cordifolia; SOD, Superoxide dismutase

Values are mean±SE of six mice. Significant differences in data are shown as a p<0.01 and b p<0.05 when compared with control (group I) and c p<0.01 and d p<0.05 when compared with aflatoxin treated group (group IIA).NS as statistically not significant

DISCUSSION

In the present study increase in lipid peroxidation level in the kidney of aflatoxin treated mice was observed. The enzymatic antioxidant defense system is natural protector against lipid peroxidation. SOD, CAT and GPx enzymes are important scavengers of superoxide ion and hydrogen peroxide. These enzymes prevent generation of hydroxyl radical and protect the cellular constituents from oxidative damage³⁵. GPx is a cytoplasmic and mitochondrial enzyme that detoxifies H₂O₂ in most cells. Glutathione –S‐Transferase (GST) is a family of the enzymes that catalyze the addition of the tripeptide glutathione to endogenous and xenobiotic substrates, which have electrophilic functional groups. They play an important role in detoxification and metabolism of many xenobiotic and endobiotic compounds³⁶. Superoxide dismutase is a very important enzyme that functions as a cellular antioxidant. It is present in cell cytoplasm and mitochondria in order to maintain a low concentration of superoxide anions³⁷. The significant reduction in the activities of antioxidant enzymes (GPx, GST, GR, SOD and CAT) and non enzymatic antioxidant system (GSH) in aflatoxin treated mice kidney (group IIA) as compared to the control group (group I) could be responsible for increased lipid peroxidation levels observed during aflatoxin induced oxidative stress. Similar results have also been reported previously for liver of mice³⁸. Protein and ascorbic acid concentration also significantly decreased in aflatoxin treated mice kidney. These observations have been supported by previous findings, which demonstrated that aflatoxin lower the protein contents³⁹. During free radical scavenging action, ascorbic acid is transformed into L-dehydroascorbate⁴⁰ and reduced glutathione is required for the conversion of L-dehydroascorbate back to ascorbate⁴¹. The fall in the level of reduced glutathione reduced the conversion of L-dehydroascorbate to ascorbate and this probably explains the lowered level of ascorbic acid in the aflatoxin treated animals.⁴²

However, administration of ethanolic RTc extract decreased the renal TBARS in aflatoxicosis bearing mice due to elevated GSH content and its antiperoxidative activity. Any compound having antioxidant property may alleviate the toxicity of aflatoxin. Therefore removing free radical is probable one of the most effective defense mechanism of body against diseases. Phytochemical studies of Tinospora revealed the presence of alkaloids viz., tinosporine, tinosporic acid, tinosporol, choline (V), isocolumbine, palmitine and magnoflorine in the roots of T.cordifolia. These alkaloids posses antioxidant property⁴³ due to its strong free radical scavenging activity. Tinospora acts as a bifunctional enzyme which induces both phase I as well as phase II enzyme system of body and significantly attenuate the oxidative stress by modulating cellular enzymatic and non-enzymatic antioxidant defense system. Thus, Tinospora upregulated antioxidant system by increasing the activities of SOD, CAT and GPx and maintains the balance between pro-oxidant and antioxidant pathways.

CONCLUSION

Results of the current study demonstrate that Tinospora cordifolia increases the activities of phase I and phase II enzymes due the presence of alkaloids having antioxidant property and these enzymes involved in alleviating oxidative stress induced by aflatoxin B1 in mice kidney.

ACKNOWLEDGEMENTS

The authors wish to thank authorities of Banasthali University for providing the facility to conduct this work

REFERENCES