Nicotinic acid (NA) although known since decades, as an lipid lowering agent drug has not become a first-line treatment due to the strong side effect called flushing occurs when given in Immediate release (IR) dosage form. In the present research, an attempt has been made to formulate controlled release matrix tablets of Nicotinic acid (NA). The tablets were prepared by wet granulation method and the prepared tablets of NA will remain intact up to 2 hrs even in pH 1.2 due to eudragit S100 and its release is not only initiated but tact fully retarded up to 12 hrs and were found to be superior in physical properties, dissolution characteristics, and drug content uniformity. The in vitro NA release data justified the release mechanism to be Case-II and anomalous transport was found to be a mixed pattern of zero order and Korsmeyer-Peppas release models. The accelerated stability studies of optimized formulation F5 made it clear that the drug content degradation was very negligible. Release pattern was almost unaffected and could be claimed to be stable at the end of three months.

Keywords: Nicotinic acid (NA), HPMC K-4M, Eudragit S100, Controlled Release (CR)

INTRODUCTION

Hyperlipidemia (HPL) is a major cause of atherosclerosis and atherosclerosis-associated conditions, such as coronary heart disease (CHD), ischemic cerebrovascular disease, and peripheral vascular disease. These conditions account for the majority of morbidity and mortality among middle-aged and older patients. HPL and low levels of high-density-lipoprotein cholesterol (HDL-C) are major causes of increased atherogenic risk; both genetic disorders and lifestyle contribute to the HPL seen in developed countries around the world.

NA has been used to treat HPL for more than 50 years. In pharmacologic doses, NA has multiple effects on lipoprotein metabolism. In adipose tissue, NA inhibits the lipolysis of triglyceride synthesis by inhibiting both the synthesis and esterification of fatty acids, effects that increase apolipoprotein. NA also enhances LPL activity, which promotes the clearance of chyomicrons and VLDL triglycerides. NA raises HDL-C (good cholesterol) levels by decreasing the fractional clearance of apoA-Iin HDL rather than by enhancing LDL synthesis. In clinical practice, however, the use of NA has been limited by poor tolerability, primarily due to cutaneous flushing. Flushing occurs in nearly all patients treated with immediate-release NA. CR formulations were developed to reduce flushing and improve tolerability.

IR dosage form of NA is required to administer three times per day after meals. While such a regimen does produce cutaneous flushing, a method of avoiding or reducing the side effects associated with immediate release of drugs like NA is the use of CR formulations. CR formulations are designed to slowly release the active ingredient from the tablet, which allows a reduction in dosing frequency as compared to the typical dosing frequency associated with conventional or immediate dosage forms. The controlled drug release reduces and prolongs blood levels of the drug, and thus minimizes or lessens the cutaneous flushing side effects that are associated with conventional or immediate release NA products.

The oral route of drug delivery is the most popular, desirable and preferred method of administering therapeutic agents for systemic effects because it is convenient for the patient, and cost effective to manufacturing process. Tablets are the most popular oral formulations available in the market and preferred by the patients and physicians Alike.

CR tablet formulations are much desirable and preferred for such therapy because they offer better patient compliance, maintain uniform drug levels, reduce dose and side effects, and increase safety margin for high potency drugs. The most commonly used method of modulating the drug release is to include it in a matrix system.

Aim of the work: The aim of this present work is to formulate a controlled release matrix tablet of Nicotinic acid by wet granulation method using polymer such as HPMC K-4M. NA has a short biological half life of 1-2 hour and rapid first pass metabolism which necessitates multiple daily dosing hence the present study was aimed to develop a controlled release formulation of NA. The best formulation is to be selected on the basis of evaluation characteristics.

The scope of the present work is: To provide a drug delivery system for continuous release of drug at controlled rate and maintains the therapeutic blood plasma concentration for a required period of time.

METHODOLOGY

Construction of standard curve for NA

A. Preparation of Standard Calibration Curve of NA in pH1.2

Preparation of Stock Solution: 100mg of NA was dissolved in 100ml of pH 1.2 buffers so as to get a stock solution of 1000 µg/ml concentration.

Preparation Standard Solution: 1ml of stock solution was diluted to 100ml with pH 1.2 buffer in 100ml volumetric flask this gives a concentration of 10 µg/ml. Aliquot of standard drug solutions were prepared by withdrawing 2, 4, 6, 8, 10µg/ml of NA respectively. The absorbances of the solution were measured against pH 1.2 as blank at 360 nm using UV visible spectrophotometer. The absorbance values were plotted against concentration (µg/ml) to obtain the standard calibration curve.

B. Preparation of Standard Calibration Curve of NA in pH6.8

Preparation Stock Solution: 100mg of NA was dissolved in 100ml of pH 6.8 buffers so as to get a stock solution of 1000 µg/ml concentration.

Preparation Standard Solution: 1ml of stock solution was diluted to 100ml with phosphate buffer pH 6.8 this gives a concentration of 50 µg/ml. Aliquot of standard drug solution ranging from 1ml to 7ml were transferred in to 10ml volumetric flask and were diluted up to the mark with pH 6.8 phosphate buffer. Thus the final concentration ranges from 5-35 µg/ml. Absorbance of each
solution was measured at 262.4 nm against phosphate buffer pH 6.8 as a blank. A plot of concentrations of drug vs. absorbance was plotted.

Preparation of NA Matrix Tablets

Controlled release tablets of NA were prepared by wet granulation technique using variable concentrations of different polymers like HPMC K4M, Eudragit S100, guar gum, and Polyvinylpyrrolidone-K-30. Different steps in Wet Granulation.

a) Weighing and blending: Specified quantity of all materials was weighed and then active ingredient (NA) and polymers were mixed by mortar pestle. Then solution of Eudragit S100 (previously dissolved in isopropyl alcohol by continuous stirring) is added to the above mix.

b) Preparation of dump mass: A liquid binder solution of PVP K30 is added to the mixture to facilitate adhesion. A damp mass resembling dough is formed and used to prepare the granulation.

c) Screening the dump mass into pellets or granules: The wet mass was pressed through a 10 number sieve to prepare the granules. This is done by hand. The resultant granules are spread evenly on large pieces of paper in shallow trays and dried.

d) Drying the granulation: Granules were dried in hot air oven (Servewell Instrument PVT LTD, Bangalore.) at 60°C for 1 to 2 hrs.

e) Sizing the granulation by dry screening: Here granules were passed through sieve number 20. Sizing of the granules is necessary so that the die cavity for tablet compression may be completely and rapidly filled by the free flowing granulation.

f) Adding lubricant and blending: After completion of dry screening the granules were mixed with magnesium stearate and talc which acts as lubricants which prevents the adhesion of the tablet formulation to the punches and dies during compression.

Forming tablets by compression: After blending with the polymers the granules were subjected to the compression using 10 stations tablet punching machine (Rimek mini press-1 Karnavati Engineering Ltd, Mehsana, Gujarat.)

Table 1: Tablet composition of different formulations of NA matrix tablets containing HPMC K4M as controlled release polymer

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Formulation Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nicotinic acid</td>
<td>F1, F2, F3, F4, F5, F6</td>
</tr>
<tr>
<td>Eudragit S100</td>
<td>500, 500, 500, 500, 500, 500</td>
</tr>
<tr>
<td>HPMC K4M</td>
<td>60, 75, 90, 90, 90, 90</td>
</tr>
<tr>
<td>PVP K30</td>
<td>100, 100, 100, 135, 170, 205</td>
</tr>
<tr>
<td>Micro. cellulose</td>
<td>46, 46, 46, 46, 46, 46</td>
</tr>
<tr>
<td>Lactose</td>
<td>40, 40, 40, 40, 40, 40</td>
</tr>
<tr>
<td>Mg stearate</td>
<td>31, 31, 31, 31, 31, 31</td>
</tr>
<tr>
<td>Tak</td>
<td>14, 14, 14, 14, 14, 14</td>
</tr>
</tbody>
</table>

Evaluation Parameters

Pre and post Compression Parameters: Parameters like bulk density (BD), tapped density (TD), Carr’s index (CI), houssner’s ratio, angle of repose were evaluated before compression. And the parameters like weight variation, hardness(Monsanto Hardness Tester), thickness(Digital Vernier Caliper, Mitutoyo, Chaina), friability (using Friabulator USP EF-2), were evaluated after compression of the tablet.

Uniformity of drug content: Five tablets of various formulations were weighed individually and powdered. The powder equivalent to average weight of tablets was weighed and drug was extracted in Phosphate buffer pH 6.8, the drug content was determined measuring the absorbance at 262.4 nm after suitable dilution using a UV/Visible Spectrophotometer (UV-1800).

In-vitro release study:

Apparatus: USP XXIV dissolution testing apparatus II (paddle method)

Dissolution medium: Phosphate buffer pH 6.8

Temperature: 37± 0.5 °C

RPM: 50

Vol. withdrawn and replaced: 5ml every 1 hour

λ max: 260.5 in pH1.2 and262.4 nm in pH6.8

Blank solution: Phosphate buffer pH- 6.8

Duration of study: 12 hours

Volume of dissolution media: 900ml

Procedure: The release rate of NA from tablets was determined using The United States Pharmacopoeia (USP) XXIV dissolution testing apparatus II (paddle type). The dissolution test was performed using 900 ml of pH 1.2, for first 2 hours then in phosphate buffer pH 6.8 for rest of the hours at 37 ± 0.5°C and 50 rpm. A sample (5 ml) of the solution was withdrawn from the dissolution apparatus hourly for 12 hours, and the samples were replaced with fresh dissolution medium. The samples diluted to a suitable concentration with respected dissolution medium. Absorbance of these solutions was measured using a UV-Visible Spectrophotometer (UV-1800). Cumulative percentage of drug release was calculated.

Drug-polymer compatibility studies: Studies were carried out using FTIR spectrophotometer (FTIR 1700S Spectrophotometer Shimadzu, Japan) by KBr pellet method, pellets were prepared at 15kg/cm² using Hydraulic pellet press, Mumbai, India.

Stability Studies: Stability studies of pharmaceutical products were done as per ICH guide lines. These studies are designed to increase the rate of chemical or physical degradation of the drug substance or product by using exaggerated storage conditions.

Method: Selected formulations were stored at different storage conditions at elevated temperatures such as 25°C ± 2°C / 60% ± 5% RH, 30°C ± 2°C / 65% ±5% RH and 40°C ± 2° / 75% ± 5% RH for 90 days. The samples were withdrawn at intervals of fifteen days and checked for physical changes, hardness, friability, drug content and percentage drug release.

RESULTS AND DISCUSSION

Compatibility studies: Study is carried out using FTIR spectrophotometer (FTIR 1700S Spectrophotometer Shimadzu, Japan) by KBr pellet method, the spectra of drug with excipients and polymers confirms that drug is compatible with all excipients(fig6, fig7).

Pre and Post compression parameters: Granules prepared by wet granulation method were evaluated for pre compression parameters measurement of bulk density and angle of repose, Hausner’s ratio, compressibility index and drug content. The results of angle of repose (<30) indicate good flow properties and the values for prepared formulations ranges from 24.22-29.74. generally Hausner’s ratio less than 1.25shows good flow property and values for all formulation were between the range of 1.17-1.23. Compressibility index values up to 15% result in good to excellent
flow properties and values for all formulation ranges from 9.54%-13.46%. All these results obtained indicate that the granules possessed satisfactory flow properties, compressibility. (Result shown in Table 5). Drug content for all the formulations were in the ranges from 97.56-100.04% (table 7). The tablet formulations were subject to various post evaluation tests (table 6) such as thickness, diameter, uniformity of weight, drug content, hardness, friability. All the parameters pass the pharmacopoeial limits.

Dissolution study: Dissolution study is carried out using USP-2 apparatus result shown in the table 8, the release of the formulation F5 shows the release up to 12hrs. And it can be drawn that release rate decreases as the concentration of the polymer increases. Correlation coefficients of different mathematical models for formulations F-1 to F-6 was calculated (table 9), and graphs of optimized formula F5 were plotted.

Stability studies: Stability studies were carried as per ICH guidelines for the period of 90 days, samples are checked periodically, the results in the table 10 to table 13, confirms that the prepared tablets were stable with respect to appearance, physical parameters, dissolution study.

| Table 2: Standard Calibration Curve of NA in pH1.2 |
|----------------|-------------------|
| Sr. No. | Concentration (µg/ml) | Absorbance in pH 1.2 |
| 1. | 2 | 0.096 |
| 2. | 4 | 0.192 |
| 3. | 6 | 0.292 |
| 4. | 8 | 0.389 |
| 5. | 10 | 0.485 |

\[Y = 0.048; R^2 = 1 \]

![Fig. 1: standard calibration curve of NA in pH1.2](image)

| Table 3: Standard Calibration Curve of NA in pH6.8 |
|----------------|-------------------|
| Sr. No. | Concentration (µg/ml) | Absorbance In Phosphate buffer (pH6.8) |
| 1. | 5 | 0.148 |
| 2. | 10 | 0.301 |
| 3. | 15 | 0.431 |
| 4. | 20 | 0.519 |
| 5. | 25 | 0.671 |
| 6. | 30 | 0.761 |
| 7. | 35 | 0.902 |

\[Y = 0.026; r^2 = 0.993 \]

![Fig. 2: standard calibration curve NA in pH6.8](image)
FTIR studies

Spectrum of pure NA

Fig. 3: FTIR spectrum of pure NA

Spectrum of pure HPMC K4M

Fig. 4: FTIR spectrum of pure HPMC K4M

Spectrum of pure Eudragit S100

Fig. 5: FTIR spectrum of pure Eudragit S100

Spectrum of mixture of Eudragit S100, NA and HPMC K4M

Fig. 7: Spectrum of mixture of Eudragit S100, NA and HPMC K4M
Evaluation of NA Tablets

Table 5: Pre Compression Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Formulation Code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F1</td>
</tr>
<tr>
<td>Angle of repose (°)</td>
<td>24.22 ± 1.25</td>
</tr>
<tr>
<td>Loose bulk density (g/ml)</td>
<td>0.238 ± 0.008</td>
</tr>
<tr>
<td>Tapped bulk density (g/ml)</td>
<td>0.263 ± 0.010</td>
</tr>
<tr>
<td>Compressibility index (%)</td>
<td>9.54 ± 0.71</td>
</tr>
<tr>
<td>Hausner's ratio</td>
<td>1.21 ± 0.01</td>
</tr>
</tbody>
</table>

Table 6: Post Compression Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Formulation code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F1</td>
</tr>
<tr>
<td>Thickness (mm)</td>
<td>7.0 ± 0.011</td>
</tr>
<tr>
<td>Hardness (kg/cm²)</td>
<td>7 ± 0.10</td>
</tr>
<tr>
<td>Friability (%)</td>
<td>0.062 ± 0.029</td>
</tr>
</tbody>
</table>

Table 7: Drug Content Uniformity

<table>
<thead>
<tr>
<th>Tablet formulation</th>
<th>Calculated value (mg)</th>
<th>Estimated value (mg)</th>
<th>% of drug content</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>500</td>
<td>487.8</td>
<td>97.56</td>
</tr>
<tr>
<td>F2</td>
<td>500</td>
<td>492.6</td>
<td>98.52</td>
</tr>
<tr>
<td>F3</td>
<td>500</td>
<td>492.2</td>
<td>98.45</td>
</tr>
<tr>
<td>F4</td>
<td>500</td>
<td>495.5</td>
<td>98.49</td>
</tr>
<tr>
<td>F5</td>
<td>500</td>
<td>499.45</td>
<td>99.89</td>
</tr>
<tr>
<td>F6</td>
<td>500</td>
<td>500.2</td>
<td>100.04</td>
</tr>
</tbody>
</table>

Table 8: Percentage drug release of formulations F1-F6

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Time (hrs)</th>
<th>Formulation Code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>F1</td>
</tr>
<tr>
<td>In acidic buffer pH 1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>11.1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>17.37</td>
</tr>
<tr>
<td>In phosphate buffer pH 6.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>23.75</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>28.58</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>38.73</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>50.01</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>60.23</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>73.5</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>85.95</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>97.3</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>94.11</td>
</tr>
<tr>
<td>13</td>
<td>12</td>
<td>86.66</td>
</tr>
</tbody>
</table>

Drug release profiles

![Fig. 8: In-vitro dissolution profile of F1 to F6 formulations](image-url)
Table 9: Correlation coefficients of different mathematical models for formulations F-1 to F-6

<table>
<thead>
<tr>
<th>Formulations</th>
<th>Zero order R²</th>
<th>First order R²</th>
<th>Higuchi's R²</th>
<th>Korsmeyer-peppas n value</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>0.959</td>
<td>0.582</td>
<td>0.888</td>
<td>0.972</td>
</tr>
<tr>
<td>F2</td>
<td>0.932</td>
<td>0.714</td>
<td>0.869</td>
<td>0.972</td>
</tr>
<tr>
<td>F3</td>
<td>0.944</td>
<td>0.798</td>
<td>0.860</td>
<td>0.971</td>
</tr>
<tr>
<td>F4</td>
<td>0.978</td>
<td>0.683</td>
<td>0.862</td>
<td>0.976</td>
</tr>
<tr>
<td>F5</td>
<td>0.948</td>
<td>0.598</td>
<td>0.833</td>
<td>0.959</td>
</tr>
<tr>
<td>F6</td>
<td>0.988</td>
<td>0.890</td>
<td>0.886</td>
<td>0.983</td>
</tr>
</tbody>
</table>

Model fitting for formulation F-5

![Graphs showing model fitting for formulation F-5](#)
Stability studies

Table 10: Physical appearance of optimized formulation after stability studies

<table>
<thead>
<tr>
<th>Temp. and relative humidity</th>
<th>Days</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>25°C± 2°C / 60% ± 5% RH</td>
<td>No change</td>
<td>Physical appearance</td>
</tr>
<tr>
<td>30°C± 2°C / 65% ± 5% RH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40°C± 2°C / 75% ± 5% RH</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 11: Physical parameters of optimized formulation after stability studies

<table>
<thead>
<tr>
<th>No. of days</th>
<th>Physical parameters</th>
<th>Fraility (%)</th>
<th>Drug content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hardness (Kg/cm²)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25±2°C 60±5% RH</td>
<td>30±2°C 65±5%</td>
<td>40±2°C 75±5%</td>
</tr>
<tr>
<td>Initial</td>
<td>6.5 ± 0.35</td>
<td>6.7 ± 0.21</td>
<td>6.8 ± 0.32</td>
</tr>
<tr>
<td>30</td>
<td>6.5 ± 0.35</td>
<td>6.8 ± 0.25</td>
<td>6.8 ± 0.3</td>
</tr>
<tr>
<td>60</td>
<td>6.6 ± 0.31</td>
<td>6.8 ± 0.28</td>
<td>6.9 ± 0.35</td>
</tr>
<tr>
<td>90</td>
<td>6.7 ± 0.38</td>
<td>6.9 ± 0.3</td>
<td>7.1 ± 0.35</td>
</tr>
</tbody>
</table>

Table 12: Dissolution study for optimized formulation after stability studies

<table>
<thead>
<tr>
<th>Time in hours</th>
<th>Cumulative percentage drug release</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>After 1 month</td>
</tr>
<tr>
<td></td>
<td>25±2°C 60±5% RH</td>
</tr>
<tr>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>7.23</td>
</tr>
<tr>
<td>3</td>
<td>10.88</td>
</tr>
<tr>
<td>4</td>
<td>21.83</td>
</tr>
<tr>
<td>5</td>
<td>25.09</td>
</tr>
<tr>
<td>6</td>
<td>30.89</td>
</tr>
<tr>
<td>7</td>
<td>35.48</td>
</tr>
<tr>
<td>8</td>
<td>41.11</td>
</tr>
<tr>
<td>9</td>
<td>47.71</td>
</tr>
<tr>
<td>10</td>
<td>56.62</td>
</tr>
<tr>
<td>11</td>
<td>65.81</td>
</tr>
<tr>
<td>12</td>
<td>78.14</td>
</tr>
<tr>
<td>13</td>
<td>98.03</td>
</tr>
</tbody>
</table>

Table 13: Correlation coefficients of different mathematical models for optimised formulation after stability studies

<table>
<thead>
<tr>
<th>Mathematical models</th>
<th>After 1 month</th>
<th>After 2 month</th>
<th>After 3 month</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero order R²</td>
<td>0.960</td>
<td>0.956</td>
<td>0.953</td>
</tr>
<tr>
<td>First order R²</td>
<td>0.554</td>
<td>0.563</td>
<td>0.556</td>
</tr>
<tr>
<td>Higuchi’s R²</td>
<td>0.838</td>
<td>0.841</td>
<td>0.835</td>
</tr>
<tr>
<td>Korsmeyer-peppas R²</td>
<td>0.978</td>
<td>0.971</td>
<td>0.965</td>
</tr>
<tr>
<td>Korsmeyer-peppas n value</td>
<td>0.993</td>
<td>0.998</td>
<td>0.996</td>
</tr>
</tbody>
</table>

CONCLUSION

In this study matrix tablet of NA were prepared by wet granulation technique using HPMC K-4M, polymer as retardant. The drug-polymer ratio was found to influence the release of drug from the formulations. It was found that in the increase of concentration of HPMC K-4M in polymeric ratio decreases the drug release. The formulations F-4, and F-5 showed good drug release with good matrix integrity but the formulation F-4 showed the release up to 11 hr (i.e.97.74% release at the end of 11hr) while the formulation F-5 showed the release of 97.23% at the end of 12hr so the formulation F-5 selected as the optimized formula . The enteric coated polymer Eudragit S100 was used to avoid the drug release in stomach because the drug is quiet unstable in stomach and the aim of the work is to release the drug in intestine.

The formulation F-5 showed good drug release with good matrix integrity. Different parameters like hardness, friability, weight variation, drug content uniformity, in-vitro drug release were evaluated. Based on these results formulation F-5was found to be the most promising formulations. The regression coefficient (R²) of Higuchi plot of optimized formula F-5 shows that the drug releases through the matrix was diffusion and slope (n) value of peappas plot confirms that non-Fickian diffusion (anomalous transport) was the main mechanism. The regression coefficient (R²) values of zero order of the optimized formulation F-5 was greater than the R².
values of first order. Thus, the drug release follows zero order release kinetics.

Stability studies were conducted for the optimized formulations as per ICH guidelines for a period of 90 days which revealed the stability of the formulations. The results suggest that the developed controlled-release matrix tablets of NA could perform better than conventional dosage forms, leading to improve efficacy and better patient compliance. Thus the aim of this study was achieved. Further preclinical and clinical studies are required to evaluate the efficacy of these formulations of NA in the management of Hyperlipidemia.

ACKNOWLEDGEMENT

The Authors are grateful to the Director, Dr. L.V.G. Nargund and the H.O.D. Dept. of Pharmaceuticals Dr. C.S.R. Lakshmi, Nargund college of Pharmacy, Bangalore, for providing facilities necessary for the project undertaken and their constant encouragement.

REFERENCES

17. Raj Kumar,Marikanti, Kiran Joshi,P,Vildya Sagar,CH, Venkateswara reddy,B,Kiran