ISSN- 0975-1491

Vol 3, Suppl 5, 2011

Research Article

CARDIOTONIC ACTIVITY OF PORTULACA OLERACEA ON ISOLATED FROG HEART

JAYANT S. BIDKAR 1,*, DHANAJI D. GHANWAT1, MADHURI D. BHUJBAL1, GANESH Y. DAMA1

¹ Department of Pharmacognosy, Sharadchandra Pawar College of Pharmacy, Dumberwadi (Otur), Tal.Junner, Dist. Pune, 410504, Maharashtra, India. Email: jayantbidkar@yahoo.co.in, dhanaji_ghanwat@rediffmail.com

Received: 12 Feb 2011, Revised and Accepted: 18 May 2011

ABSTRACT

Portulaca oleracea (Linn.) family Portulacaeae commonly known as Brihalloni, Gholika, Lona, Lonamla, Loni, Lonika & Lunia. The juice was claimed to have general cardiotonic activity. Present study was carried out to determine the same by using fresh juice of aerial part *Portulaca olaracea* with different dilutions & compared with cardiotonic activity of digoxin-the life saving cardiotonic.

The activity was tested by using isolated frog heart assembly. The present preliminary studies confirm the better cardiotonic activity of *Portulaca olaracea* than digoxin. Further studies can confirm the reduced toxicity & this will be the advantage of *Portulaca olaracea* over digitalis. Thus, in future it will be interesting to isolate the active chemical constituents which are responsible for the cardiotonic activity.

Keywords: Portulaca olaracea, Isolated frog heart, Cardiotonic activity, Digoxin.

INTRODUCTION

Cardiovascular Diseases (CVD) are the secondary cause of deaths in many parts of the world, although modern drugs are effective in preventing the disorders, their use is often limited because of their side effects and adverse reactions. A wide array of plants and its active principles, with minimal side effects, provide an alternate therapy for Ischemic heart disease. Cardiac glycosides & catecholamine have been used as main therapeutic agent in the treatment of congestive cardiac failure¹. But cardiac glycosides (e.g. digoxin) have narrow therapeutic index & hence cause many a times intoxication. Despite of the advancement of knowledge in understanding the basic pharmacology of cardioactive drugs glycosides still have its adverse effects in terms of toxication². Hence there is a need for new drug research with wide therapeutic index & good cardiac activity, & hence, the present study is aimed to evaluate cardiotonic activity of *Portulaca oleracea*.

Portulaca oleracea (Linn.) family Portulacaeae is commonly known as Brihalloni, Gholika, Lona, Lonamla, Loni, Lonika and Lunia. It is a common Purslane, also called as Verdolaga, Pigweed, Little Hogweed/ Pusly, is an annual succulent, which can rich annual succulent which can rich 40cm in height. It is a native of India and the Middle East, but is naturalized elsewhere & in some regions is considered an invasive used³.

The herb is considered to possess cooling, antiscorbutic, aperients & diuretic properties, the diuretic property probably due to its high content of potassium salts. The fresh leaf juice is considered an effective thirst-quencher, leaves and tops are used in antihaemorrhagic poultices. It exhibits a wide range of pharmacological effects , including antibacterials, analgesic and anti-inflammatory, skeletal muscle relaxant. 8, wound healing, and antiulcer activities. It is also consumed as a vegetable and has been reported to be rich in α -linolenic acid, β carotene & omega- 3 fatty acids $^{11,\,12}$. In addition to flavonoids, coumarins. monoterpene glycoside. and alkaloids have also been reported to be important chemical constituents of this plant.

MATERIALS AND METHODS

Chemicals and Standard

The marketed digoxin ampoules (Sunpharma Ltd.) were obtained from local market. Various different dilutions were made with distilled water and labeled as follows, D1- $25~\mu g/ml$, D2- $50~\mu g/ml$. above prepared samples were evaluated for their cardiotonic activity and treated as standard. Sodium chloride, Potassium chloride, calcium chloride, sodium bicarbonate, glucose and other solvents used were of analytical grade available commercially.

Animal

Frog (Rana tigrina)

Instruments

Sherington Rotating Drum, Sterling's heart lever.

Plant material

The aerial parts of *Portulacca oleraceae* were collected from Satara district of Maharashtra, India .The plant was authenticated by Mr. P. G. Diwakar Deputy Director Botanical Survey of India (BSI), Koregaon Road, and Pune. The voucher specimen was deposited in BSI, Pune.

Preparation of juice

The fresh aerial parts of *Portulaca oleracea* L (Portulacaeae), were washed thoroughly to remove adhered material. It was grind thoroughly in mixer. The material was filtered through Whatman filter paper no.41 and filtrate was collected. The prepared juice was diluted with the help of distilled water in varying proportion and labeled as follows,

P1 - Undiluted juice

P2 - 1:1 (juice: Sterile water)

P3 - 1:2 (juice: Sterile water)

All the preparations were evaluated for their cardiotonic activity by using isolated frog heart assembly. The rate and force of heart contraction was determined.

Preparation of hypodynamic ringer solution^{17,18}

Hypodynamic ringer solution was prepared by using standard method (Table-1).

Evaluation of cardiotonic activity^{17,18}

- 1. The frog of species *Rana tigrina* was pithed and pinned it to the frog board.
- A midline incision was given on the abdomen, the pectoral girdle was removed and the heart was exposed.
- 3. The pericardium was carefully removed and put a few drops of hypodynamic frog ringer over the heart.
- 4. The inferior vena cava was traced, put a thread around it and given a small cut in order to insert the venous cannula. The cannula was inserted in the vein and the thread was tied to assure the cannula in place which is in turn connected to a saline

- bottle containing hypodynamic frog ringer solution. A small cut in one of the aorta was given for the ringer to come out.
- 5. Heart was isolated and attached to the stand with moderate flow of ringer.
- A thin pin hook was passed through the tip of the ventricle and with the help of a fine thread attached to the hook; it was tied

to the free limb of the Sterling's heart lever which was fixed to a stand. A proper tension was adjusted by altering the height of the lever. The normal heart rate was noted. All test samples that is P1, P2, P3, D1 and D2 were administered in different doses viz. 0.1ml, 0.2ml, 0.3ml respectively. The rate and force of heart contraction were noted as given in (Table 2, 3, 4, 5, 6. Figure 1, 2, 3, 4, 5.).

Table 1: Composition of Hypodynamic ringer solution

Sr. No.	Ingredients	Quantity
1.	Sodium chloride (NaCl)	6.5 gm
2	Potassium chloride (KCl)	$0.14\mathrm{gm}$
3	Calcium Chloride (CaCl ₂)	0.03 gm
4	Sodium bicarbonate (NaHCO ₃)	0.2 gm
5	Glucose	2 gm
6	Distilled Water	1000 ml.

Fig. 4: Effect of Sample (D1) on Frog heart

Table 5: Hypodynamic Heart (Stand ard D-1)

Sr. No.	Drug	Dose(in ml)	Beats/min(Mean)	Change in force
1	-	Normal	38	Normal
2	P1	0.1	32	Slightly increase
3	P2	0.2	26	Slightly increase
4	P3	0.3	22	Rapidly increase

Fig. 5: Effect of Sample (D2) on Frog heart

Table 6: Hypodynamic Heart (Standard D-2)

Sr. No.	Drug	Dose(in ml)	Beats/min(Mean)	Change in force
1	-	Normal	37	Normal
2	P1	0.1	27	Slightly increase
3	P2	0.2	23	Slightly increase
4	Р3	0.3	20	Sudden cardiac block

RESULTS AND DISCUSSION

The cardiotonic activity was determined by Hypodynamic frog heart. Results showed that all the dilutions of test solutions of fresh aerial part juice of *Portulaca oleracea* L (Portulacaceae) produced positive ionotropic (increase in height of force of contraction) on Hypodynamic frog heart. From the observations, it was revealed that the test solution P1 (undiluted juice) showed significant response as compared to other test solutions (figure 1, 2, 3, 4, 5.). The graph obtained indicates that at lower dose of undiluted juice had significant action as compared to Digoxin. These preliminary studies confirm the better cardiotonic activity of Portulaca oleracea, and it can stand as better option for digitalis. Further studies can confirm the reduced toxicity & this will be the advantage of Portulaca oleracea over digitalis. Further investigation is necessary for isolation of active phytochemical constituents which are responsible for cardiotonic activity and to determine the possible mechanism of action.

REFERENCES

- Mohire NC, Salunkhe VR, Bhise SB, Yadav AV. Cardiotonic activity of aqueous extract of heartwood of *Pterocarpus marsupium*. Indian Journal of Experimental Biology. 2007; 450: 532-537.
- Satoskar RS, Bhandarkar SD, Rege NN. Handbook of Pharmacology & Pharmacotherapeutics, 16th edition, Medical Publishers 2004; p. 375.
- 3. Sanja SD, Sheth NR, Patel NK, Patel B. Characterization & evaluation of antioxidant activity of *Portulaca oleracea*. International Journal of Pharmacy & Pharmaceutical sciences. 2009; 1(1): 74-84.
- Nadkarni KM, Nadkarni AK. Indian Materia Medica. Vol.1: Popular Prakashan; 1999.
- Zhang XJ, Ji YB, Qu ZhY, Xia Jch, Wang L, Experimental studies on antibiotic functions of *Portulaca oleracea* L. in vitro. Chinese J. Microecol. 2002; 14: 277-280.

- Chan K., Islam MW, Kamil M, Radhakrishnan R, Zakaria MNM, Habibullah M, Attas A. The analgesic & Anti-inflammatory effects of *Portulaca oleracea*, L. Subsp. Sativa. J. Ethnopharmacology. 2002; 73: 445-451.
- Parry O, Marks JA, Okwuasaba F. The skeletal muscle relaxant action of *Portulaca oleracea*: role of potassium ions. J. Ethnopharmacology. 1993; 40: 187-194.
- 8. Parry O, Okwuasaba F, Ejike C. Skeletal muscle relaxant action of an aqueous extract of *Portulaca oleracea* in the rat, J. Ethnopharmacology. 1987; 19: 247-253.
- Rashed N, Afifi FU, Disi AM. Simple evaluation of the d healing activity of a crude extract of *Portulaca oleracea* L. (growing in Jordan) in Mus musculus JVI-1. J. Ethnopharmacology. 2003; 88: 131-136.
- Karimil G, Hosseinzadeh H, Ettehad N. Evaluation of the gastric antiulcerogenic effects of *Portulaca oleracea* L. extracts in mice. Phytotherapy. Res. 2004; 18: 484-487.
- Liu Lx, Howe PY, Zhou F, Xu ZQ, Hocart C, Zhang R. Fatty acids
 β-carotene in Australian Purslane (*Portulaca oleracea*)
 varieties., J. Chromatogr. A. 2002; 893: 207-213.
- Simopoulos AP, Salem HJ. Purslane: a terrestrial source of omega-3-fatty acids. N. Engl. J. Med. Med. 1986; 315: 833.
- Awad NE. Lipid content & antimicrobial activity of phenolic constituents of cultivated *Portulaca oleracea* L. Bull., Fac. Pharm. Cairo Univ. 1994; 32: 137-142.
- 14. Sakai N, Inada K, Okamoto M, Shizuri Y, Fukuyama Y. Portuloside-A, a monoterpene glucoside from *Portulaca oleracea*. Phytochemical. 1996; 42: 1625-1628.
- 15. Xiang L, Xing D, Wang W, Wang F, Ding Y, Du L. Alkaloids from *Portulaca oleracea* L. Phytochemical. 2005; 66: 2595-2601.
- Kulakarni SK. Handbook of Experimental Pharmacology. 2nd Edition. Vallabh Prakashan. 1993; 9: p. 74-76.
- 17. Kale SR, Kale RR. Practical Pharmacology and toxicology. 6th edition. Nirali Prakashan. 2003; p.27- 28.