EVALUATION OF ANTIHYPERLIPIDEMIC ACTIVITY OF FICUS HISPIDA LINN LEAVES IN TRITON WR-1339 (TYLOXAPOL) INDUCED HYPERLIPIDEMIA IN MICE

1*KANIKA PANDIT, S.M KARMARKAR2, A.M BHAGWAT1*
1Department of Biological Science, School of Science, NMIMS University, Vile Parle (West), Mumbai 400056. Email: kanika.pandit@yahoo.com

Received: 5 July 2011, Revised and Accepted: 18 Nov 2011

ABSTRACT

Antihyperlipidemic activity of the methanolic plant extract of *Ficus hispida* Linn. f. leaves was evaluated against elevated cholesterol, triglycerides level in Triton – WR 1339 (Tyloxapol) induced hyperlipidemic mice model. Administration of the leaf extract of *Ficus hispida* at doses of 125, 250, and 500 mg/kg respectively, showed a significant reduction in serum lipid parameters such as Total Cholesterol, Triglycerides, VLDL and LDL level as compared to the Tyloxapol treated control group, indicating that the leaf extract of *Ficus hispida* possessed Antihyperlipidemic properties.

Keywords: Antihyperlipidemic, *Ficus hispida*, Triton WR-1339 (Tyloxapol), Serum lipid parameters.

INTRODUCTION

Mortality rates due to cardiovascular diseases have increased several folds in most developed and undeveloped countries. These cardiac ailments are directly related to hyperlipidemia [1]. Evidence from lipid lowering trials has clearly established that reduction of total cholesterol or low density lipoprotein cholesterol (LDLc) is associated with a decreased risk of atherosclerosis and coronary heart disease [2, 3]. Furthermore, since the last two decades a strong correlation has been observed between levels of circulating lipids and mortality rates from coronary atherosclerotic heart disease [4].

A large number of synthetic antihyperlipidemic drugs are currently available in the market but these lag on the desired properties of safety on long term use and cost. These factors affect a patient's compliance [5]. Plants and herbs are mines of a large number of bioactive phytochemicals that might serve as leads for the development of effective, safe, cheap and novel drugs. A number of medicinal plants have shown their beneficial effect on cardiovascular disease by virtue of their lipid lowering, antianginal, antioxidant and cardioprotective effects [6-7].

Ficus hispida (Moraceae) [commonly known as Dumoor (Bengali), Gobla (Hindi) and Peyatti (Tamil), bokoda (Marathi), Kadaath (Kannada), and Jangli anjir (Gujarati)] is a moderate sized tree which grows well in damp localities and shady places. Almost all parts of this plant are used in traditional Indian medicine for the treatment of various ailments by traditional healers. The leaves are of particular interest from a medicinal point of view [6], as an anti-diarrhoeal [9], hepatoprotective [10], anti-inflammatory [11], antitussive, antipyretic, astrigent, vulnerary, haemostatic, and an anti-ulcer drug [12-13].

The phytochemical constituents of *Ficus hispida* Linn. f. include phenanthroindolizidine alkaloids, n-alkanes, coumarins and triterpenoids [14]. Published reports also show that *Ficus hispida* leaves contain hispidin, oleancolic acid, bergapten, β-amyrin and β-sitosterol [15, 16] and the bark comprises lupeol acetate, β-sitosterol and β-amyrin acetate [17]. Ample evidence is available suggesting that these compounds exhibit significant antioxidant, cardioprotective and hypoglycemic properties [18-21].

However, as there are no reports on the antihyperlipidemic activity of this plant species the present study was initiated to investigate the antihyperlipidemic potential of the methanol extract of the leaf of *Ficus hispida* in Triton WR-1339 (Tyloxapol) induced hyperlipidemic mice model.

MATERIALS AND METHODS

Chemicals

Tyloxapol (Triton WR 1339) was procured from Sigma Aldrich, USA, while Simvastatin was obtained from Cipla LTD. Enzymatic kits were purchased from Span Diagnostics India Ltd. All other chemicals were of Analytical grade.

Plant material and extraction

Ficus hispida fresh leaves were collected from Mumbai, Maharashtra in August 2010. The plant species was authenticated by a botanist. The leaves were washed well with water, dried under shade, pulverised in a mechanical grinder and stored in a closed air tight container till further use. Fifty g of the powdered material was extracted with methanol at 60-70°C for 30 hours in a Soxhlet apparatus. The extract was filtered and concentrated to obtain a greenish semi solid mass (8.42% on dry weight basis). Quantities of the individual drug (extract) to be administered orally were calculated and suspended in vehicle (0.5%CMC) so as to yield dose levels of 125 mg/kg, 250 mg/kg and 500 mg/kg body weight.

Preliminary phytochemical screening

The concentrated extracts were analysed to identify various constituents using standard methods [22-25].

Animals

Adult albino mice of either sex, weighing 25-30g were taken for the study. The animals were housed in standard environmental conditions and fed with food and water *ad libitum*. The mice were acclimatised to the laboratory conditions for 10 days before commencement of the experiment. All experiments were carried out according to the guidelines of the Committee for the Purpose of Control and Supervision of Experiments on Animals, India and approved by the Institutional Animal Ethical Committee.

Acute toxicity studies

Acute toxicity was studied using acute toxic limit test dose guideline 425 of Organisation for Economic Co-operation and Development (OECD). Toxicological effects, if any, were assessed on the basis of mortality and behavioural changes observed (OECD, 2001).

Induction of hyperlipidemia

Hyperlipidemia was induced by a single intraperitoneal injection of Triton WR-1339 (300mg/kg body weight) dissolved in 0.9% saline to overnight fasted albino mice. After one hour of tritoning, the animals were given feed *ad libitum*. Hyperlipidemia was confirmed 24 hours after Triton injection by determining the blood cholesterol concentration.

Pharmacological Evaluation

The animals were divided into six groups, (n =6 per group), Group I normal control, Group II administered Tyloxapol (control), Group III. IV and V administered Tyloxapol + methanolic *Ficus hispida* extract.
(MFHE) at 125 mg/kg, 250 mg/kg and 500 mg/kg respectively. The sixth Group was administered Tyloxapol + Simvastatin. This served as the positive control.

All mice except the normal control group were injected with triton WR-1339 (Sigma, USA) at a dose of 300 mg/kg to induce hyperlipidemia in the mice, while the normal control group was injected with normal saline (NS). Twelve hour following Triton WR-1339 administration, group II, group IV and group V mice were treated with methanolic Ficus hispida extract (MFHE) at doses of 125, 250, and 500 mg/kg respectively, orally by gastric intubation. Simultaneously, the positive control group was given the standard drug Simvastatin at a dose of 80 mg/kg by gastric intubation. Carboxy methyl cellulose (CMC) 0.5% was used as the vehicle to administer MFHE and Simvastatin.

At the end of the experimental period, blood was withdrawn after 24 hours by retro-orbital sinus puncture method and centrifuged at 5000 rpm for 10 minutes so as to obtain serum.

Biochemical assay

The amount of serum total cholesterol, HDL-C was estimated by the enzymatic cholesterol oxidase - phenol + aminophenazone (CHOD-PAP) method [24, 25, 26, 27]. Triglycerides were estimated by the enzymatic glycerol-3-phosphate oxidase - phenol + aminophenazone (GPO-PAP) method [28]. LDL-cholesterol and VLDL-cholesterol were calculated using the Friedwald formula [29].

Statistical Analysis

The results have been expressed as mean ± SD for 6 animals in each group. One way analysis of variance (ANOVA) was performed by comparison of values for different groups [30] at P<0.05.

RESULTS

Acute toxicity studies

Administration of methanolic extract of leaves of Ficus hispida up to 2000 mg/kg body weight did not produce any mortality and gross behavioural changes.

Antihyperlipidemic activity

From the data presented in Table 1 and 2 it is observed that the administration of Tyloxapol induced hyperlipidemia in mice (Group 2). Concurrent administration of Ficus hispida at doses of 125mg/kg, 250mg/kg and 500mg/kg body weight (Group IV, Group V and Group VI) respectively showed a significant reduction in the levels of serum total cholesterol, LDL, VLDL as well as triglycerides. There was a decrease in serum HDL cholesterol when compared with the normal control (Table 2).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Total Cholesterol (mg/dl)</th>
<th>Triglycerides (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I Normal control</td>
<td>84.5 ± 11.56</td>
<td>52.2 ± 19.42</td>
</tr>
<tr>
<td>Group II Triton treated</td>
<td>248.98 ± 18.19*</td>
<td>695.35 ± 82.81*</td>
</tr>
<tr>
<td>Group III Triton + Simvastatin (80mg/kg)</td>
<td>181.78 ± 27.76**</td>
<td>448.54 ± 77.11**</td>
</tr>
<tr>
<td>Group IV Triton + MFHE (125mg/kg)</td>
<td>171.61 ± 33.42**</td>
<td>435.06 ± 42.40*</td>
</tr>
<tr>
<td>Group V Triton + MFHE (250mg/kg)</td>
<td>153.13 ± 26.40**</td>
<td>357.14 ± 67.70*</td>
</tr>
<tr>
<td>Group VI Triton + MFHE (500mg/kg)</td>
<td>132.35 ± 37.63*</td>
<td>392.47 ± 47.66*</td>
</tr>
</tbody>
</table>

All value are expressed as Mean ± SD. Triton-treated group was compared with normal control, Triton + MFHE and drug treated groups were compared with the Triton control group *P<0.001, **P<0.01.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>HDL (mg/dl)</th>
<th>LDL (mg/dl)</th>
<th>VLDL (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I Normal control</td>
<td>62.97 ± 9.73</td>
<td>11.04 ± 4.33</td>
<td>10.48 ± 3.89</td>
</tr>
<tr>
<td>Group II Triton treated</td>
<td>39.83 ± 2.81</td>
<td>70.08 ± 26.37**</td>
<td>139.07 ± 16.56*</td>
</tr>
<tr>
<td>Group VI Triton + Simvastatin (80mg/kg)</td>
<td>27.51 ± 3.79</td>
<td>64.57 ± 31.37</td>
<td>89.71 ± 5.42**</td>
</tr>
<tr>
<td>Group III Triton + MFHE (125mg/kg)</td>
<td>36.81 ± 7.32</td>
<td>44.19 ± 26.15</td>
<td>90.61 ± 8.48*</td>
</tr>
<tr>
<td>Group IV Triton + MFHE (250mg/kg)</td>
<td>32.04 ± 11.27</td>
<td>49.65 ± 22.58</td>
<td>71.43 ± 13.54*</td>
</tr>
<tr>
<td>Group V Triton + MFHE (500mg/kg)</td>
<td>34.36 ± 7.17</td>
<td>19.50 ± 37.63**</td>
<td>78.49 ± 9.53*</td>
</tr>
</tbody>
</table>

All value are expressed as Mean ± SD. Triton-treated group was compared with the normal control group, Triton + MFHE and drug treated groups were compared with Triton control group *P<0.001, **P<0.01 and ***P<0.05.

DISCUSSION

Hyperlipidemia has been documented as one of the major risk factors involved in the development of cardiovascular diseases [31]. Atherosclerosis and congestive heart diseases are strongly associated with disorders of lipid metabolism and plasma lipoproteins. Triton WR-1339 (Tyloxapol) has been widely used for screening of natural or chemical hypolipidemic drugs because it is convenient in terms of length of treatment period and handling [32]. Triton WR-1339 (Tyloxapol) acts as a surfactant which blocks the uptake of lipoprotein from the blood circulation by extra hepatic tissues, resulting in an increase in the level of circulatory lipoproteins [33]. Many medicinal plants like Phyllanthus niruri, Vaccinium myrtillus and Erica multiflora have been investigated for their acute hypolipidaemic activity in Triton WR-1339 (Tyloxapol) induced hyperlipidemic animals [24, 25, 26].

The present study was designed to investigate the antihyperlipidemic effect of the extract of the leaf of Ficus hispida on Triton WR1339 induced hyperlipidemia in mice. The study demonstrated that 24 hours after administering Ficus hispida leaf extract at different doses (125mg/kg, 250mg/kg, and 500mg/kg), there was a remarkable reduction in the total cholesterol, triglycerides, VLDL and LDL levels in the serum of hyperlipidemic mice, suggesting a beneficial modulatory influence on cholesterol metabolism and turnover. However there was no improvement in HDL cholesterol.

Otway and Robinsons (1967) have stated that the large increase in plasma cholesterol and triglycerides due to Triton WR-1339 administration resulted mostly from an increase of VLDL secretion by the liver, accompanied by a strong reduction of LDL-C and LDL-C catabolism [37]. In the present investigation the reduction of plasma total cholesterol in response to treatment with the crude extract of Ficus hispida, there was a significant reduction in the levels of LDL-C and VLDL-C catabolism. In the present investigation the reduction of plasma total cholesterol in response to treatment with the crude extract of Ficus hispida, could possibly be due to a rapid catabolism of LDL-C through its hepatic receptors for its final elimination in the form of bile acids [37].

189
Published reports have shown that Ficus hispida leaves contain hispidin, oleanolic acid, bergaten, β-amin and β-sitosterol [14]. These compounds are known to exhibit significant antidiabetic, cardioprotective and hypoglycemic properties [15-21]. It is likely that some of these phytoconstituents might be responsible for exerting beneficial antihyperlipidemic effects. The cholesterol lowering effect of β-sitosterol has already been well established [22]. Further, it has been shown that the cholesterol is reduced by preventing its absorption from the gut [23]. Preliminary phytochemical investigations of the methanolic extract of Ficus hispida revealed the presence of alkaloids, flavonoids, sterols, saponins, phenols and glycosides. The antihyperlipidemic activity of Ficus hispida (500 mg/kg) was equipotent when compared to Simvastatin. The present study has shown that administration of the methanol extract at 500 mg/kg of Ficus hispida was more effective than the standard drug for managing hyperlipidemia.

CONCLUSION

From the present study it can be concluded that the methanolic extract of the leaf of Ficus hispida improves serum lipid profile in triton WR-1339 (Tylopxanol) induced hyperlipidemia in mice. The extract at 500mg/kg is as effective as the standard drug simvastatin. The current study supports, at least partly, the traditional use of this ethnomedicinal plant. Further, studies have been initiated to gain a deeper insight into the possible mechanism of action of this plant drug.

REFERENCES

18. Cigarella A, Nastaeni M, Cavalli E and Puglisi L. Novel lipid-lowering properties of Vaccinium myrtillus L. leaves, a traditional antiobiotic treatment in several models of...

