ANALYSIS OF ANIMALS

ABSTRACT

The antidiabetic efficacy of ethanolic leaf extract of Nymphaea odorata was evaluated in alloxan induced diabetic mice. In the present study, the animals were divided five groups as control, diabetes induced, glibenclamide treated and with Nymphaea odorata leaf extract of 300 and 600 mg/kg/b wt/day administered respectively. Effect of oral administration of plant extract of 300 and 600 mg/kg/b wt/day for 45 days on the level of body weight, blood glucose and activity of glucokinase, glucose-6-phosphatase, Fructose-6-phosphatase, and hexokinase were evaluated. When comparing with the values of the plant extract treated group with those of the control diabetic group the results indicated that the plant extract treated mice shown regain of body weight, significant decrease in the elevated blood glucose level and there is decrease in the activity of Glucose-6-phosphatase, Fructose-6-phosphatase and increase in the activity of glucokinase and hexokinase. These results showed that N.odorata leaf extract possesses promising antidiabetic effect in alloxan induced diabetic mice.

Keywords: Antidiabetic, Alloxan, Nymphaea odorata, Blood glucose, Glycolytic enzymes

INTRODUCTION

Diabetes mellitus is the failure of metabolic disorder characterized by altered carbohydrate, proteins and fat metabolism caused by the complete or relative insufficiency of insulin secretion and/or insulin action. The World Health Organization (WHO) estimates that more than 220 million people worldwide have diabetes and this number is likely to more than double by 2030. The incidence and consequences associated with diabetes are found to be high in countries like India (31.7%), China (20.8%) and USA (17.7%). The rate is expected to rise to 79.4%, 42.3% and 30.3%, respectively, by 2030 in the above countries. Nymphaea odorata (water-lily) is known by common names such as fragrant water-lily, American white-lily and Alligator Bonnet amongst many others. Compounds such as tannins (tannic acids and gallic acids, anti-microbial), alkaloids (nymphaerine and nupharine) and glycosides (cardenolide and myricitrin) which are antiseptic, astringent and demulcent have been reportedly isolated from this plant. The present study was necessary to carry out the antidiabetic efficacy of ethanolic leaf extract of Nymphaea odorata.

MATERIALS AND METHODS

Preparation of plant extract

The fresh leaves of the N. odorata were shade dried for 6 days and reduced to powder by using dry grinder. This powder was packed into soxhlet apparatus and extracted using absolute ethanol (40-50 °C). The extraction was carried out for 38 hrs till the total extraction was achieved. The extract obtained was dried at 45 °C in a hot air oven till semi-solid mass was obtained. The yield obtained was (4.5% w/w) and the extract was stored in a refrigerator at 4 °C until used.

Chemical

Alloxan monohydrate was purchased from Sigma-Aldrich, StLouis, USA. All other reagents used were of analytical grade.

Animals

Laboratory bred 3 to 4 months adult virgin male albino mice weighing about 20 to 30 g are used under standard animal housing condition (temperature controlled 25 ± 2°C facility and maintained with 12 hrs light/dark cycle) with unlimited access to pellet diet, "Gold Mohar" (Hindustan Lever Ltd., Mumbai) and water ad libitum throughout the study in the animal house, P.G. Department of Studies in Zoology, Karnatak University, Dharwad. Animals were randomly divided into control and four treatment groups (Distilled water vehicle is served as control). Each group consists of 10 mice housed in separate polypropylene cages containing sterilereddy husk as bedding material.

Induction of diabetes

Diabetes was induced in male Swiss Albino mice by intraperitoneal administration of alloxan monohydrate (Sigma-Aldrich Co., USA) in concentration of 150 mg/kg body weight dissolved in normal saline. Blood glucose was measured after 72 hour of alloxanisation by gluco-card-01 mini glucometer (Accu-check sensor) of ARKAY Factory, Inc. Japan, since alloxan is capable of producing fetal hypoglycemia as a result of massive pancreatic insulin release, mice were treated with 30 percent glucose solution orally at different time intervals after six hours of alloxan induction, and 5 percent glucose solution was kept in bottles in their cages for next 24 h to prevent hypoglycemia. Mice showing fasting blood glucose levels (>250 mg/dl) were selected for the study.

Treatment

Animals were divided into five groups of ten mice each. Standard pellet diet and water was provided to the animals. Normal untreated mice given only vehicle (distilled water). Diabetic control mice given a single dose intraperitoneal injection of 150/mg/kg alloxan. Diabetic mice were given a single dose of glibenclamide (500 mg/kg b.wt) 1 ml with vehicle by oral administration daily for 45 days. Diabetic mice were given a single dose of ethanolic leaf extract of Nymphaea odorata leaves (300 mg /kg b.wt and 600mg/kg b.wt) 1 ml with vehicle by oral administration daily for 45 days. All the experimental animals were sacrificed by cervical dislocation on the 46th day of termination. The blood was collected by tail prick and liver was dissected out and weighed to the near milligrams in digital weighing balance (vibra) were used for the Blood glucose level and glycolytic enzyme estimations.

Blood Glucose level and glycolytic enzymes

The Blood Glucose level by glycolytic enzymes such as glucokinase, Glucose-6-phosphatase, Fructose-1-6-diphosphatase and Hexokinase were estimated.

Statistical Analysis

Statistical significance between the control and experimental data were subjected to analysis of variance (ANOVA) together with Dunnett's test (P<0.05).

RESULTS

Body weight

The results indicate that there was a significant decrease in the body weight of alloxan treated mice when compared with that of the normal control (Table 1). However, there was a significant increase
in the body weight of the mice treated with alloxan along with glibenclamide and plant extract of higher dose when compared with that of the alloxan treated control. Further, the results indicate that there was a recovery in the body weight of mice treated with alloxan along with glibenclamide and plant extract when compared with that of the alloxan treated control.

Organ weight

The results indicate that there was a significant decrease in the weight of the liver in the mice treated with alloxan when compared with that of the normal control (Table 2). However, there was a significant increase in the weight of the liver in the mice treated with alloxan along with glibenclamide and plant extract when compared with that of alloxan treated control. Further, the results indicate that there was a recovery in the weight of liver in the mice treated with alloxan along with glibenclamide and plant extract when compared with that of alloxan treated control mice.

Blood Glucose level and glycolytic enzymes

The results indicate that administration of alloxan led to significant elevation in glucose level when compared with that of the normal control mice (Table 3). Further the plant extract leads to significant reduction in blood glucose level when compared to alloxan treated control group. The hyperglycemic activity of the plant extract was persistent throughout the period almost in comparable to that of the reference drug glibenclamide and there is decrease in the activity of Glucose-6-phosphatase, fructose-6-phosphatase and increase in the activity of glucokinase and hexokinase in plant extract treated mice. It depicts the antihyperglycemic potential of ethanolic leaf extract of *N. odorata*.

Table 1: Effect of ethanolic leaf extract of *N. odorata* on body and organs weight in diabetic albino mice

<table>
<thead>
<tr>
<th>Groups</th>
<th>Treatment (mg/kg/d)</th>
<th>Change in body weight (g)</th>
<th>Relative organ weight /100 g body weight (Mean ± S.E) (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Normal Control</td>
<td>2.67±0.33</td>
<td>6.69±0.22</td>
</tr>
<tr>
<td>II</td>
<td>Alloxan Control (150)</td>
<td>-1.67±0.11*</td>
<td>5.61±0.21*</td>
</tr>
<tr>
<td>III</td>
<td>Alloxan Glibenclamide (500)</td>
<td>2.78±0.08*</td>
<td>5.69±0.31*</td>
</tr>
<tr>
<td>IV</td>
<td>Alloxan+N. odorata (300)</td>
<td>1.60±0.14</td>
<td>5.64±0.28*</td>
</tr>
<tr>
<td>V</td>
<td>Alloxan+N. odorata (600)</td>
<td>2.50±0.12*</td>
<td>6.48±0.21*</td>
</tr>
</tbody>
</table>

Values are mean ± SEM of 10 animals * Significant P ≤ 0.05 vs. Control

Table 2: Effect of ethanolic leaf extract of *N. odorata* on blood glucose in diabetic albino mice

<table>
<thead>
<tr>
<th>Groups</th>
<th>Treatment (mg/kg/d)</th>
<th>Blood glucose level (mg/dl)</th>
<th>Final (45days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Normal Control</td>
<td>132.27±2.45</td>
<td>134.03±5.53</td>
</tr>
<tr>
<td>II</td>
<td>Alloxan Control (150)</td>
<td>362.26±3.56</td>
<td>254.80±5.46*</td>
</tr>
<tr>
<td>III</td>
<td>Alloxan+Glibenclamide (500)</td>
<td>280.20±3.38</td>
<td>162.50±6.42*</td>
</tr>
<tr>
<td>IV</td>
<td>Alloxan+N. odorata (300)</td>
<td>258.33±4.48</td>
<td>150.24±4.38*</td>
</tr>
<tr>
<td>V</td>
<td>Alloxan+N. odorata (600)</td>
<td>244.31±4.52</td>
<td>148.45±5.58*</td>
</tr>
</tbody>
</table>

Values are mean ± SEM of 10 animals * Significant P ≤ 0.05 vs. Control

Table 3: Effect of ethanolic leaf extract of *N.odorata* on glycolytic enzymes in diabetic albino mice

<table>
<thead>
<tr>
<th>Groups</th>
<th>Treatment (mg/kg/d)</th>
<th>Glycolytic Enzymes</th>
<th>Glucose-6-phosphataseb</th>
<th>Fructose-6-diphosphatasec</th>
<th>Hexokinasec</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Normal Control</td>
<td>128.52±4.38</td>
<td>0.16±0.01</td>
<td>0.242±0.02</td>
<td>402.67±6.62</td>
</tr>
<tr>
<td>II</td>
<td>Alloxan Control (150)</td>
<td>99.01±6.9</td>
<td>0.27±0.02*</td>
<td>0.380±0.03*</td>
<td>88.36±5.12*</td>
</tr>
<tr>
<td>III</td>
<td>Alloxan+Glibenclamide (500)</td>
<td>264.8±6.38*</td>
<td>0.159±0.01*</td>
<td>0.284±0.01*</td>
<td>122.13±8.17*</td>
</tr>
<tr>
<td>IV</td>
<td>Alloxan+N. odorata (300)</td>
<td>102.3±5.08*</td>
<td>0.230±0.01*</td>
<td>0.266±0.04*</td>
<td>68.42±6.18*</td>
</tr>
<tr>
<td>V</td>
<td>Alloxan+N. odorata (600)</td>
<td>125.48±7.18*</td>
<td>0.18±0.02*</td>
<td>0.272±0.03*</td>
<td>72.33±6.17*</td>
</tr>
</tbody>
</table>

Values are mean ± SEM of 10 animals * Significant P ≤ 0.05 vs. Control

Discussion

In the present study the body weight of the control mice were found to be increased when compared with that of the initial body weight. The results of the present study on body weight indicate that alloxan treatment leads to significant decrease in body weight. This was recovered by treatment of ethanolic leaf extract of *Nymphaea odorata* for 45 days. These results are almost in similar with standard drug glibenclamide. The loss of body weight was expected in diabetic mice as the diabetes affects the protein synthesis in the body. Alloxan has been reported to cause a massive reduction of the β-cells of the islets of Langerhans and induce hyperglycemia. Therefore, the findings of the present study indicate that the mice treated with plant extract showed revitalization in the body weight might be due to protein synthesis in the body. This ability to protect the body weight loss could be due to plant extracts antidiabetic activity.

Diabetes mellitus is a group of syndrome characterized by hyperglycemia and altered metabolism of carbohydrates, lipids and proteins. In the present study there was a hyperglycemia in alloxan treated mice showing Diabetes mellitus might be due to glycogenolysis or gluconeogenesis.

In animals, it can be induced by partial pancreatectomy or by the administration of diabetogenic drugs such as alloxan, streptozotocin, and anti-insulin serum. Alloxan causes massive destruction of the β cells of islets of Langerhans. The hyperglycemia and diabetes were imputed to the selective destruction of pancreatic β cells that secrete insulin and 14, 15. Abnormalities in the regulation of peroxide and transition metal metabolism are postulated to result in the

Kaliwal et al.

development of the disease as well as its long term complication. Similar reports of reduction in blood glucose also reported such as Artemisia herba in alloxan induced Diabetes mellitus. Similar results have been reported on the hypoglycemic activity of plant extract Terminia catappa. The antidiabetic effect of N. odorata extract could be linked to more than one mechanism. The possible mechanism includes the stimulation of β cells and subsequent release of insulin and activation of the insulin receptors. The plants antihyperglycemic action may be by stimulation of pancreatic secretion of insulin. In this context a number of other plants have also been reported to have antihyperglycemic and insulin release stimulatory effect. Hence, in the present study the N. odorata extract also may act as a hepatoprotective agent so this evidently, improves the function of liver and maintains glucose uptake, enhanced transport of blood glucose to peripheral tissue and utilization, which may be another mechanism of action.

Although N. odorata plant has been used as a traditional plant treatment in ayurveda medicine in India and North American continent detailed scientific investigation on efficiency and mechanism of its action are yet to be done. The present study indicates the scientific basis for its use. As we know Diabetes mellitus is a metabolic disorder characterized by insufficient insulin secretion and efforts have continued to seek for insulin like molecules from synthetic or plant sources for treatment. In the context detailed scientific investigation on efficiency and utilization, which may be another mechanism of action. The antidiabetic effect of the ethanolic leaf extract might be due to the presence of the active compound and appropriate elucidation of its mechanism. In the present study increased activities of glucokinase and increased gluconeogenesis are some of the changes severely affected during diabetes. Decreased glycolysis impeded glycogenesis and increased gluconeogenesis are some of the changes of glucose metabolism in the diabetic liver. Increase in liver glycogen can be brought about by an increase in glycogenesis and or decrease in glycogenolysis. Insulin influences the intracellular utilization of glucose in a number of ways. Insulin increase hepatic glycogen synthase by increasing the amount and activity of several key enzymes including glucokinase and phosphofructokinase. Hexokinase catalyses the conversion of glucose to glucose-6-phosphate and plays a central role in the maintenance of glucose homeostasis. In the liver, this above enzyme is an important regulator of glucose storage and disposal. Hexokinase is the main enzyme catalyzing glucose phosphorylation. Impairment of hexokinase activity suggests the impaired oxidation of glucose via glycolysis leading to its accumulation resulting in hyperglycemia.

In the present study the hexokinase and glucokinase activity in the liver was found to be decreased in alloxan induced diabetic mice which might be due to insulin deficiency, insulin stimulates the activities of hexokinase. The deficiency of insulin in mice treated with alloxan might be due to damage of β cells of pancreases or reported to inhibit the activity of glucokinase directly. Treatment with N. odorata ethanolic leaf extract elevated the activity of hexokinase in the liver. N. odorata extract may stimulate insulin secretion which activates hexokinase, thereby increasing utilization of glucose leading to decreased blood sugar levels. It has been reported that the N. odorata extract contains tannins (tannic acids and gallic acids), alkaloids (nymphaerine and nupharine), glycosides (cardenolide and myrictrin) which are antiseptic, astringent and demulcent. In the present study the hexokinase activity might be due to action of any one or more of these compounds which stimulate the secretion of insulin leading to activation of glucokinase enzymes in the liver. Similar results are reported in rats treated with hydroethanolic extract of Nymphaea stellata flower, the activity of hexokinase and LDH was increased. It has been suggested that treatment with Hemidesmus indicus or Lagerstroemia speciosa L. extract increased the activity of hexokinase in the liver.

Glucose-6-phosphatase and Fructose-1,6-diphosphatase are important regulatory enzymes in gluconeogenesis. Liver being the main organ responsible for maintaining the homeostasis of the blood glucose. Insulin decrease gluconeogenesis by decreasing the activities of key enzymes such as glucose-6-phosphatase, fructose-1,6-diphosphatase, phosphoenolpyruvate carboxykinase and pyruvate carboxylase. In the present study increased activities of glucose-6-phosphatase and fructose-6-phosphatase were observed in the liver of alloxan induced diabetic mice. In N. odorata ethanolic leaf extract and glibenclamide drug treated mice, showed significant decrease in the two enzymes (glucose-6-phosphatase and fructose-6-phosphatase) seen significantly reduced in liver. This might be due to increased insulin secretion which is responsible for the repression of the gluconeogenic principle enzymes.

The present observation provide evidence that ethanolic leaf extract of N. odorata exhibited antidiabetic or hypoglycemic activity on experimental diabetic mice might be due to enhancing the peripheral utilization of glucose by correcting the impaired liver or kidney glycosylation and by suppression of its gluconeogenic activity similar to that of insulin. This effect might be due to the presence of tannins (tannic acids and gallic acids), alkaloids (nymphaerine and nupharine) and glycosides (cardenolide and myrictrin) and other constituents present in the leaves which could act synergistically or independently in enhancing the activity of glycolytic and gluconeogenic enzymes. However, further, comprehensive chemical and pharmacological investigation should be carried out to isolate the active compound and appropriate elucidation of its mechanism.

ACKNOWLEDGEMENT

The authors are indebted to the Post graduate Department of Studies in Biotechnology and Microbiology and Department of zoology, Karnataka University Dharwad for providing all the necessary facilities.

REFERENCES

4. Josh, H. and E. Emily. N. odorata extract may stimulate insulin secretion which is responsible for the repression of the gluconeogenic principle enzymes. Saint Marks Fl. 2002.

