IN SILICO STUDIES ON NEISSERIA MENINGITIDIS DIHYDROPTEROATE SYNTHASE AND PTERIN BASED INHIBITORS FOR MENINGITIS

K. ANBARASU*, S. JAYANTHI
School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India. Email: kanbarasu2010@vit.ac.in.

Received: 27 Feb 2012, Revised and Accepted: 16 April 2012

ABSTRACT
Meningitis, one of the dreadful disease of human which cause inflammation and swelling in the lining of brain and spinal cord. The infection caused by various routes like viral, bacterial and fungal. Among the microbes, the bacterial meningitis was primarily caused by the bacterium Neisseria meningitidis. Dihydropteroate synthase (DHPS) was assumed to be a novel drug target for the disease Meningitis based on the metabolic role in the bacterium. The pterin site was targeted for dihydropteroate synthase inhibition with pterin based inhibitors. The molecular docking analysis revealed the effective inhibition of Neisseria meningitidis dihydropteroate synthase with pterin based inhibitors. Our study constitutes a step towards anti-pterin pocket class of inhibition for dihydropteroate synthase which assumed to be therapeutic candidates for bacterial Meningitis treatment.

Keywords: Meningitis, Neisseria meningitidis, Dihydropteroate synthase, Pterin, Homology modeling, Docking.

INTRODUCTION
Meningitis, a disease mainly characterized by an inflammation of the meninges layer and caused by viral or bacterial infection.1-4 Bacterial meningitis was characterized by life-threatening infection. The meningitis mortality rates around 20% to 25% for the bacterial infections.5 The bacterial meningitis key infection mode was recruitment of highly activated leukocytes into the cerebrospinal fluid.6 The bacterial meningitis with the symptoms of Seizures with fever was common type in childhood.

The recent report suggested that only 0.4–1.2% of children who have a seizure with fever will have unexpected acute bacterial meningitis (ABM).4 In case of potential bacterial inhabitants of the mucosa, the class of bacteria includes Streptococcus pneumoniae, Haemophilus influenzae and Neisseria meningitidis. Neisseria meningitidis the potential cause of bacterial meningitis common in Northern Europe and the US. The infection primarily targeted the host inflammatory response and affect variety of detrimental pathophysiological changes in the brain, which includes increased blood-brain barrier permeability, increased CSF outflow resistance.7 The bacterium was classified in to various serogroups based on capsular polysaccharide which the outermost structure on the meningococcal surface. Among the 12 serogroups identified on the basis of antigenic variation of the capsule, (A, B, C, W135, and Y) were more pathogenic of the invasive disease throughout world and considered to be an epidemic disease.7-10

The enzyme dihydropteroate synthase involved in the bacterial metabolism and play a critical role in the folate pathway, a novel metabolism and play a critical role in the folate pathway, a novel drug target in the drug design of various bacterial infections, but it is not expressed in most eukaryotes including humans. Drug target dihydropteroate synthase (EC 2.5.1.15) catalyses the condensation of 6-hydroxymethyl-7,8-dihydropteridine pyrophosphate to para-aminobenzoic acid to form 7,8-dihydropteroate.11 The crystallographic structure resolved in many bacterial species, including Escherichia coli, Staphylococcus aureus and Mycobacterium tuberculosis.12 The enzyme has two substrates of a pteridine derivative and pABA. The pterin-binding pocket has been visualized in all the available crystal structures of DHPS and shown to be highly conserved. The pocket is located within the TIM barrel, directly below two flexible loops (loop 1 and loop 2) that are known to contain important elements of the active site, and is bounded by several key conserved residues that recognize the pterin-pyrophosphate substrate. The inhibitors of the constrained pterin binding pocket would be predicted to have a broad spectrum of activity against both Gram-positive and Gram negative bacteria, and also be less able to tolerate resistance mutations.13

MATERIALS & METHODS
Construction of 3D model and validation
For the drug target enzyme Neisseria meningitidis dihydropteroate synthase, the experimental 3D structure was not available. The homology modeling methods was implemented for 3D structure prediction for the drug target Neisseria meningitidis dihydropteroate synthase. The protein sequence of Neisseria meningitidis serogroup – A dihydropteroate synthase (283 amino acids) was retrieved from SWISSPROT database (Accession No: Q9I7F0). NCBI BLASTTM (www.ncbi.nlm.nih.gov/blast/) tool was used to identify the template for 3D structural modeling. The results showed dihydropteroate synthase from Thermus thermophilus Hb8(PDB ID: 2DQW) with a resolution of 1.65 Å had sequence similarity of 49% with target sequence. The E- value of 8e-62 revealed 2DQW was a suitable template for the in silico 3D structural modeling. Modeler9v1017 was used to perform 3D structure prediction by using the Phi/Psi conformation in Ramachandran plot. The modeled structure showed correctly based on the Z score -5.9. The quality of model was further validated by ProSA21 for the target protein and selection of ligands. The possible active site of the target protein was visualized in Pymol18 to identify the structure features.

The modeled target structure of dihydropteroate synthase was evaluated by PROCHECK19 (http://nlsolver.mbi.ucla.edu/SAVES/) using the Phi/Psi conformation in Ramachandran plot. The PROCHECK checks the stereochemical quality of a protein structure, producing a number of PostScript plots analysing its overall and residue-by-residue geometry. The modeled target structure showed significant stereochemical quality in Ramachandran plot. The 3D structural superimposition of the template dihydropteroate synthase from Thermus thermophilus Hb8 (2DQW) and modeled Neisseria meningitidis dihydropteroate synthase was performed in SPDBV20 based on Ca trace. RMS was calculated to evaluate the modeling based on checking fit between two molecules. RMS value of 0.55Å justified the perfect modeling through structural similarity. The quality of model was further validated by ProSA21 which reveals crossly misfolded structures in PDB file (https://prosaservices.came.sbg.ac.at/prosa.php). The results showed Neisseria meningitidis dihydropteroate synthase folded correctly based on the Z score -5.9.

Conformation of binding by molecular docking
Molecular docking analysis was carried out by predicting active sites for the target protein and selection of ligands. The possible active sites of target were searched using QSiteFinder22 (www.modelling.leeds.ac.uk/QsiterFinder/). Ten binding sites were obtained and the best site was selected based on the algorithm of pocket and ligand binding site. The pterin based inhibitors13 were
selected and assumed as ligands for the drug target dihydropteroate synthase were namely compound 1: (2-amino-6-(methylamino)-5-nitropyr-midin-4(3H)-one) and compound 2: 2-amino-6-(methylamino)-5-nitroso-1H-pyrimidin-4-one, analog of compound 1 were retrieved from pubchem database23 (http://pubchem.ncbi.nlm.nih.gov/) with Lipinski’s rule of five properties24 based on the previous studies on enzyme dihydropteroate synthase25. The ligand structure 2D and 3D drawing was done in ACD-Chemsketch26. The OPEN BABEL27 (www.vcclab.org/lab/babel/start.html) was used to convert mol format to PDB format. The molecular docking studies for drug target Neisseria meningitidis dihydropteroate synthase with two ligands was performed based on flexible docking in Autodock28.

RESULTS & DISCUSSION

In homology modeling, the structure of unknown protein is solved based on the structure of known, structurally related, template proteins. From the BLAST against PDB alignment, the template was selected based on identity, score and E-value. The template for the homology modeling of Neisseria meningitidis dihydropteroate synthase was 2DQW. The 3D structure of dihydropteroate synthase showed the protein was under classification of classic beta/alpha which contains 8 helices, 8 strands and 28 turns. The primary secondary structure of alpha helices showed in red color and beta sheets showed in yellow color. The secondary structure elements loops and turns showed in green color.

Fig. 1: Modeled 3D structure of Neisseria meningitidis dihydropteroate synthase visualized in Pymol.
The 3D structural evaluation was done in PROCHECK by constructing Ramachandran plot. The protein *N. meningitidis* dihydropteroate synthase which modeled by Modeller9V10 was evaluated which contains core region of Ramachandran plot: 89.5% core, 9.3% additional allowed, 0.8% generously allowed and 0.4% disallowed regions. The superimposition was done in SPDBV by superimpose target *N. meningitidis* dihydropteroate synthase and template 2DQW and calculate RMS for the fit. The RMS calculation of target and template showed 0.55 Å which is less than 1Å confirms the modeled structure was good. The results of ProSA showed the Z score -5.9 for the overall quality and modeling near to X-ray methods. The local quality of the modeled protein showed good with range 0-1.5 of knowledge based energy.

The active sites of the modeled drug target *N. meningitidis* dihydropteroate synthase was predicted by using Q-sitefinder and active sites were analysed. The sites included ILE22, ASP59, ASP98, ASN118, ASP119, VAL120, ALA121, MET143, MET145, ASP189, GLY191, PHE192, PHE194, ILE221, GLY222, VAL223, SER224, LYS226, ARG261, VAL262, and HIS263. The 2D and 3D drawing for pterin based inhibitors compound 1 and compound 2 was done by using ACD-Chemsketch. The file conversion was done in OPEN BABEL. The carbon atom showed in grey color, nitrogen atom in blue color, oxygen atom in red color and hydrogen atoms in white color.

![Ramachandran Plot by PROCHECK server](image1)

![Superimposed view of target and template in SPDBV](image2)

![Protein quality check analysis in ProSA](image3)

![Ligand 3D structure of pterin based inhibitors](image4)
Table 1: Lipinski’s rule of 5 for ligands

<table>
<thead>
<tr>
<th>S. No</th>
<th>Ligand</th>
<th>Molecular Weight[g/mol]</th>
<th>XLogP3-AA</th>
<th>H-Bond Donor</th>
<th>H-Bond Acceptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Compound 1</td>
<td>185.14078</td>
<td>-0.5</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Compound 2</td>
<td>169.14138</td>
<td>-1</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

The ligands compound 1 and 2 used for the in silico studies followed the rules of Lipinski's rule of 5. The H– bond donor and H– bond acceptor favored the binding with the inhibitor molecules. Molecular docking, a method of predicting the orientation of one molecule to a second molecule when docked. The orientation was the justification parameter used to predict the strength of binding affinity of two docked molecules. The binding orientation of small molecules to the drug targets leads to a drug design.

The autodock program followed the parameter setup and prepares the macromolecules by adding essential hydrogen atoms, Kollman united atom type charges, and solvation parameters were added with the aid of autodock tools. The autodock tools assigns atomic solvation parameters based on atomic occupancies for use in protein simulations. The grid map was constructed for the affinity analysis with grid maps of 63·41·55 grid points and 0.375 Å spacing were generated using the autogrid program, and maps were centered on the protein center. The searching calculation was done in the autogrid step. For the scoring calculation, docking simulations were performed using the Lamarckian genetic algorithm (LGA). Each docking experiment was derived from 10 different runs that were set to terminate after a maximum of 2,500,000 energy evaluations. The population size was set to 200. Based on the least binding free energy of 10 different conformations, the best conformation was selected.

Docking between compound 1 with dihydropteroate synthase

Compound 1 docked with the drug target Neisseria meningitidis dihydropteroate synthase, conformational pose 9 was best with lowest binding energy of -5.39 Kcal/mol. Compound 1 showed six H bond interaction with active site residues ASN24, ASP59 and ASP98. The H bond interactions showed in dashed yellow lines between the ligand atoms and drug target residue atoms confirmed the inhibition of Neisseria meningitidis dihydropteroate synthase.

Fig. 4: Docked pose of compound 1 with dihydropteroate synthase

Table 2: H-bond interaction of compound 1 with dihydropteroate synthase

<table>
<thead>
<tr>
<th>S. No</th>
<th>Atom in ligand</th>
<th>Atom in protein</th>
<th>H-Bond Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>ASP59(O)</td>
<td>2.73</td>
</tr>
<tr>
<td>2</td>
<td>N</td>
<td>ASP59(OD2)</td>
<td>2.99</td>
</tr>
<tr>
<td>3</td>
<td>H</td>
<td>ASP98(OD2)</td>
<td>2.68</td>
</tr>
<tr>
<td>4</td>
<td>N</td>
<td>ASP98(OD2)</td>
<td>3.02</td>
</tr>
<tr>
<td>5</td>
<td>N</td>
<td>ASN24(ND2)</td>
<td>3.25</td>
</tr>
<tr>
<td>6</td>
<td>O</td>
<td>ASN24(ND2)</td>
<td>2.88</td>
</tr>
</tbody>
</table>
Docking between compound 2 with dihydropteroate synthase

Compound 2 docked with the drug target Neisseria meningitidis dihydropteroate synthase, conformational pose 1 was best with lowest binding energy of -4.88 Kcal/mol. Compound 2 showed five H bond interaction with active site residues ASN24, ASP98, ASP98 and VAL23.

Table 3: H-bond interaction of compound 2 with dihydropteroate synthase

<table>
<thead>
<tr>
<th>S. No</th>
<th>Atom in ligand</th>
<th>Atom in protein</th>
<th>H-Bond Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>O</td>
<td>ASN24 (ND2)</td>
<td>2.73</td>
</tr>
<tr>
<td>2</td>
<td>N</td>
<td>ASP98 (OD2)</td>
<td>3.21</td>
</tr>
<tr>
<td>3</td>
<td>N</td>
<td>ASP98 (OD2)</td>
<td>2.88</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>ASP59 (O)</td>
<td>2.70</td>
</tr>
<tr>
<td>5</td>
<td>H</td>
<td>VAL23 (O)</td>
<td>3.44</td>
</tr>
</tbody>
</table>

CONCLUSION

In our present study on Neisseria meningitidis dihydropteroate synthase, the homology modeling and molecular docking revealed the binding affinity of compound 1 and 2. The analysis evaluated by binding free energy calculations for the ligands. The investigation on potential binding modes of compound 1 and compound 2 showed significant interactions with the active sites of the drug target Neisseria meningitidis dihydropteroate synthase to confirm the inhibitory activity. The results obtained by our study may be valuable for future computational drug design of potent inhibitors for Neisseria meningitidis dihydropteroate synthase as promising anti-menin gitis therapeutics.

REFERENCES

12. 7,8-Dihydropteroate Synthase from Bacillus anthracis: Mechanism and Novel Inhibitor 
14. Kirk E. Hevener, Mi-Kyung Yun, Jianjun Qi Iain D. Kerr, Kerim Babaoglu, Julian 
15. G.Hurdle et al. Structural studies of pterin-based inhibitors of 
16. dihydropteroate synthase. 
18. Pratik P Vikhe, Rajendra B Gaikar, Ganesh P Vikhe, Rohan J Meshram, Bhausaheb K Karale. Molecular properties and 
19. docking studies on chromone pyrazolones as potential 
27. SaL.A & Blundell.T.L. Comparative protein modeling by 
29. Delano, WL. The PyMOL molecular graphics system. Delano 
32. PROCHECK: a program to check the stereochemical quality of 
34. Guex N, Manuel CP. SWISS-MODEL and the Swiss-Pdb Viewer: 
35. An environment for comparative protein modeling. 
37. Wiederstein, M. & Sippl, M.J. ProSA-web: interactive web service 
38. for the recognition of errors in three-dimensional structures of 
40. Alsdair T. R. Laurie and Richard M. Jackson. Q-SiteFinder: an 
41. energy-based method or the prediction of protein-ligand 
43. Bolton E, Wang Y, Thiessen PA, Bryant SH. PubChem: 
44. Integrated Platform of Small Molecules and Biological 
45. Activities. Chapter 12 IN Annual Reports in Computational 
47. Lipinski CA, Lombardo F, Dominy BW, Feeney BJ. Experimental 
48. and computational approaches to estimate solubility and 
49. permeability in drug discovery and development settings. Adv 
51. Babaoglu K, Qi J, Lee RE, White SW. Crystal structure of 7,8- 
52. dihydropteroate synthase from Bacillus anthracis: mechanism 
54. ACD/ChemSketch Freeware, version 10.00, Advanced 
56. Tetko, I. V.; Gasteiger, J.; Todeschini, R.; Mauri, A.; Livingstone, 
57. D.; Erdl, P.; Palyulin, V. A.; Radchenko, E. V.; Zefirov, N. S.; 
58. Makarenko, A. S.; Tanchuk, V. Y.; Prokopenko, V. V. Virtual 
59. computational chemistry laboratory - design and description. J 
62. Bekew, R. K. and Olson, A. J. Automated docking using a 
63. lamarkian genetic algorithm and empirical binding free energy 