EFFECT OF GLYCYRRHIZA GLABRA ROOT EXTRACT ON LEARNING AND MEMORY IN WISTAR ALBINO RATS

KOSURI KALYAN CHAKRAVARTHI1*, RAMAKRISHNA AVADHANI2 AND RAO SUDARSHANARAM NARAYAN3

1Department of Anatomy, Dr. Pinnamaneni Siddhartha Institute of Medical Sciences & Research Foundation, Chinnaoutpalli, Gannavaram Mandal, Krishna District (Andhrapradesh), India, 521286. 2Department of Anatomy, Yenepoya Medical College, Yenepoya University, Deralakatte, Mangalore 575018, 3Department of Pharmacology, Yenepoya Medical College, Yenepoya University, Deralakatte, Mangalore 575018. Email: kalyankosuri@gmail.com

Received: 26 Jun 2012, Revised and Accepted: 05 Aug 2012

ABSTRACT

Memory is an organism’s mental ability to store, retain and recall information. The hippocampus plays an important role in learning and memory. The present study was undertaken to investigate the effect of Glycyrrhiza glabra root extract on learning and memory in three months old male Wistar albino rats. The aqueous extract of root of Glycyrrhiza glabra was administered orally in three doses (75, 150 and 300 mg/kg) for 2 weeks. Memory was assessed using the Water maze, Elevated plus maze tests to evaluate the learning and memory parameters and served as the exteroceptive behavioral model. Diazepam induced amnesia served as the interoceptive behavioral model. The aqueous extract of root of Glycyrrhiza glabra showed improvement in learning and memory in a dose dependent manner. However, 150 mg/kg dose has shown a significant (p<0.01) enhancement in learning and memory which is comparable to control. Hence Glycyrrhiza glabra appears to be a promising drug for improving memory and it would be worthwhile to explore the potential of this plant in the management of impaired learning, dementia, Alzheimer’s disease and other neurodegenerative disorders. However, further studies are necessitated to identify the exact mechanism of action.

Keywords: Amnesia, Learning, Memory, Glycyrrhiza glabra, Water maze, Elevated plus maze

INTRODUCTION

The brain is the center of the nervous system in all vertebrates. The cerebral cortex of the human brain contains roughly 15-33 billion neurons depending on gender and age 1, linked with up to 10,000 synaptic connections each. Each cubic millimeter of cerebral cortex contains roughly one billion synapses 2 These neurons communicate with one another by means of long protoplasmic fibers called axons, which carry trains of signal pulses called action potentials to distant parts of the brain or body and target them to specific recipient cells. From a biological perspective, the function of a brain is to generate behaviors that promote the genetic fitness of an animal.3 The hippocampus is a major component of the brain of humans and other mammals. It belongs to the limbic system and plays important roles in long-term memory and spatial navigation. The central cholinergic pathways play a prominent role in learning and memory processes4.

Memory is the ability of an individual to record sensory stimuli, events, information and etc, retain them over a short or long period of time and recall the same at a later date when needed 5. Learning is the process of acquiring knowledge about the world and memory could be considered as the retention of the acquired knowledge, which can be retrieved as and when, required 6. Dementia is a mental disorder characterized by loss of intellectual ability which invariably involves impairment of memory. The most common cause of dementia is Alzheimer’s disease, which is a progressive neurodegenerative disorder associated with loss of neurons in distinct brain areas. Stressful conditions are often associated with loss of memory and cognitive functions which may lead to threats of schizophrenia and Alzheimer’s disease.

Traditionally herbal drugs have been used to enhance cognitive functions and to alleviate other functions associate with the Alzheimer’s disease. In the traditional system of medicine, the roots and rhizomes of Glycyrrhiza glabra (family: Leguminosae) have been in clinical use for centuries. The term Glycyrrhiza has been derived from ancient Greek word glykos, meaning sweet and r hiza, meaning root. Glycyrrhiza glabra consists of polysaccharides, flavonoids, triterpene, saponins, pectins, simple sugars, mineral salts, amino acids, and various other substances. Glycyrrhizin, a triterpenoid compound, accounts for the sweet taste of licorice root. Glycyrrhiza glabra (Gg) Roots have anti-ulcer7, anti-inflammatory8, antioxidant9-10, expectorant, diuretic, laxative, and sedative11 properties. They also possess antipyretic 12, antihistamine 13, antiviral 14, antimicrobial and anxiolytic 15 activities.

MATERIALS AND METHODS

Preparation of Aqueous root extract of Glycyrrhiza glabra (Gg)

The roots of Glycyrrhiza glabra (Gg) was purchased from local ayurvedic store, Udupi and its authenticity confirmed by the Dr. Krishna Kumar, Chairman, Department of applied Botany, Mangalore University.

The crude aqueous extract of Gg was prepared by macerating dried powdered root with respective solvent for 24 hrs. The macerated powdered roots were then extracted in a Soxhlet extractor for 36 h, 1-2 cycles per hour. The crude extract was evaporated to dryness using a rotary evaporator. The yield of the extract was 16%. The extract was administrated orally to separate groups of three months old male Wistar albino rats in three different doses 75, 150 and 300 mg/kg respectively. Fresh solutions of root extract of Gg were prepared every day before the start of experiment by reconstituting the weighed quantity of the crude extract in a minimum amount of distilled water for oral administration.

Experimental animals

The experimental protocol was approved by the Institutional Animals Ethics Committee (IAEC), Yenepoya University and care of laboratory animals was taken as per CPCSEA guidelines. Rats were housed individually (Animal house, Yenepoya University, Regno 347/CPCSEA) in polypropylene cages (22.5× 35.5× 15 cm) and housed individually (Animal house, Yenepoya University, Regno 347/CPCSEA) in polypropylene cages (22.5× 35.5× 15 cm) and maintained at temperature (25 ±2º C) and light (light period, 08.00– 20.00) in a controlled room with relative humidity of 50–55%. Food and water were provided ad libitum. Experiments were carried out between 09:00 and 14:00 hrs.

Drugs

Diazepam (Vishal Enterprises, Mangalore) was used in the present study.

Experimental Design: Rats were randomly divided into six groups.

Group I- Control (n=6): A known volume of distilled water was administrated orally each day for 2 weeks.

Group II- Diazepam control (n=6): Diazepam 7 mg/kg was injected (i.p) 20 min before the test session.
(memory) was examined 24 hr after the first day training session for each animal. Retention of this learned-task (i.e., 15 closed arm with its four legs. TL was recorded on the first day taken by the animal to move from the open arm into one of the platform. Transfer latency (TL) was defined as the time (in seconds) placed at the end of the open arm, facing away from the central walls (closed-arms) and two had no border in place of the walls (open-arms). The maze was elevated to a height of 50 cm. On the first day (i.e., after the last dose of 2 weeks duration), each rat was placed at the end of the open arm, facing away from the central platform. Transfer latency (TL) was defined as the time (in seconds) taken by the animal to move from the open arm into one of the closed arm with its four legs. TL was recorded on the first day (training session) for each animal. Retention of this learned-task (memory) was examined 24 hr after the first day trial (i.e., 15th day, 24 hr after the last dose of 2 weeks duration). Significant reduction in TL value of retention indicated improvement in memory.

Morris water maze

The Morris water maze served as the exteroceptive behavioral model to evaluate learning and memory in rats. It was made of wood-block and consisted of four arms (50 cm long x 10 cm wide) fixed to a central platform (10 cm x 10 cm): two had 12 cm high walls (closed-arms) and two had no border in place of the walls (open-arms). The maze was elevated to a height of 50 cm. On the first day of the experiment (i.e., after the last dose of 2 weeks duration), each rat was placed at the end of the open arm, facing away from the central platform. Transfer latency (TL) was defined as the time (in seconds) taken by the animal to move from the open arm into one of the closed arm with its four legs. TL was recorded on the first day (training session) for each animal. Retention of this learned-task (memory) was examined 24 hr after the first day trial (i.e., 15th day, 24 hr after the last dose of 2 weeks duration). Significant reduction in TL value of retention indicated improvement in memory.

Morris water maze

The Morris water maze is a well-validated test for spatial learning and memory. The technique of using escape from water to motivate learning has been used for many years. There are several advantages of Morris water maze over other models of learning and memory including absence of motivational stimuli such as food and water deprivation, electrical stimulations, and buzzer sounds. Morris water maze was used to assess learning and memory in experimental three months old male albino Wistar rats. Each animal was subjected to the four acquisition trials per day for 4 consecutive days (i.e., after the last dose of 2 weeks duration) and their memory was tested in the 5th day, during which the platform was removed (probe trial). A plastic circular swimming pool (117 cm in diameter, 60 cm high) was filled to a depth of 25 cm with water. Two hundred milliliters of evaporated milk was added to make the water opaque and prevent visualization of the platform. Four points on the rim of the pool were designated north (N), south (S), east (E), and west (W), thus dividing the pool into four quadrants (NW, NE, SE, SW). An 8 x 8 cm Plexiglas platform, onto which the rat could escape, was positioned in the center of one of the quadrants, 1 cm below the water surface. One day before the test, each rat was placed in the pool for 60 seconds without the platform present; this free swim enabled the rat to become habituated to the training environment. The latency from immersion into the pool to escape onto the platform was recorded for each trial. If the rat did not find the platform in 120 seconds it was manually placed on the platform for a 30-second rest. On day 5 (i.e., 18th day, 96 hr after the last dose of 2 weeks duration), the platform was removed. The rat was allowed 60 seconds of free swimming. The time spent in the quadrant where the platform was previously located was measured (probe trial), which was considered to assess memory for platform location.

Table 1: Effect of aqueous root extract of Gg on Transfer Latency (TL) of three months old male albino Wistar rats by elevated plus maze

<table>
<thead>
<tr>
<th>Groups</th>
<th>Treatment</th>
<th>TL on 14th day (Learning)</th>
<th>TL after 24 h (Retention)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group-I</td>
<td>Control</td>
<td>36.20±3.123</td>
<td>32.17±3.452</td>
</tr>
<tr>
<td>Group-II</td>
<td>Diazepam</td>
<td>51.74±5.154</td>
<td>50.92±2.612</td>
</tr>
<tr>
<td>Group-III</td>
<td>Gg 7mg/kg/i.p</td>
<td>28.46±2.015</td>
<td>22.85±1.894</td>
</tr>
<tr>
<td>Group-IV</td>
<td>Gg 75mg/kg/p.o</td>
<td>13.72±1.199</td>
<td>7.595±0.5773</td>
</tr>
<tr>
<td>Group-V</td>
<td>Gg 150mg/kg/p.o</td>
<td>27.95±1.453</td>
<td>22.33±1.937</td>
</tr>
<tr>
<td>Group-VI</td>
<td>Gg 300mg/kg/p.o</td>
<td>14.80±1.114</td>
<td>8.93±0.6423</td>
</tr>
</tbody>
</table>

n=6, values are expressed as Mean ± SEM; *p<0.05, **P<0.01 (ANOVA followed by Dunnett’s multiple comparison test). Gg: Glycyrrhiza glabra; TL: Transverse Latency in seconds.

Morris water maze

In this test, the rats that were treated with aqueous root extract of Gg (75, 150, 300mg/kg, p.o) for 2 weeks learned the platform location faster than the controls. Aqueous extract of Gg (150mg/kg, p.o) administrated for 2 weeks also reversed amnesia induced by Diazepam (Table-2 & 3). Even in the probe trial there was more preference for platform location in the target quadrant at all the doses of aqueous root extract of Gg (75, 150, 300mg/kg, p.o) but with a significant result (p<0.01) with 150mg/kg (Table-3 & Graph-1).
Table 2: Effect of aqueous root extract of Gg in three months old male Wistar albino rats by Morris water maze (4 acquisition trials per day for 4 consecutive days).

<table>
<thead>
<tr>
<th>Groups</th>
<th>Treatment</th>
<th>1st Day</th>
<th>2nd Day</th>
<th>3rd Day</th>
<th>4th Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I</td>
<td>Control</td>
<td>44.46±2.87</td>
<td>42.5±1.87</td>
<td>36.39±2.26</td>
<td>27.07±3.19</td>
</tr>
<tr>
<td>Group II</td>
<td>Diazepam 7mg/kg/i.p</td>
<td>58.99±0.451</td>
<td>57.6±1.34</td>
<td>51.71±3.09</td>
<td>49.59±2.31</td>
</tr>
<tr>
<td>Group III</td>
<td>Gg 75mg/kg/p.o</td>
<td>32.48±4.00*</td>
<td>31.26±4.29*</td>
<td>25.60±4.04*</td>
<td>18.39±1.29*</td>
</tr>
<tr>
<td>Group IV</td>
<td>Gg 150mg/kg/p.o</td>
<td>14.78±2.86**</td>
<td>12.25±2.65**</td>
<td>7.16±1.28**</td>
<td>5.90±0.89**</td>
</tr>
<tr>
<td>Group V</td>
<td>Gg 300mg/kg/p.o</td>
<td>32.27±3.89*</td>
<td>29.37±3.09*</td>
<td>25.10±3.57*</td>
<td>18.58±6.85*</td>
</tr>
<tr>
<td>Group VI</td>
<td>Gg 150mg+Diazepam7mg/kg/i.p</td>
<td>14.25±2.42**</td>
<td>11.43±2.85*</td>
<td>8.35±1.38**</td>
<td>6.85±0.84**</td>
</tr>
</tbody>
</table>

Mean latencies (Learning scores) across trails in the Morris water maze task; n=6;
Values are expressed as Mean ± SEM; * p<0.05, ** P<0.01 (ANOVA followed by Dunnett’s multiple comparison test); Gg: Glycyrrhiza glabra

Table 3: Probe Trail (Retention) of the Morris water maze task for 2 Weeks duration

<table>
<thead>
<tr>
<th>Groups</th>
<th>Treatment</th>
<th>Probe Trail (5th Day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I</td>
<td>Control</td>
<td>18.99±1.85</td>
</tr>
<tr>
<td>Group II</td>
<td>Diazepam 7mg/kg/i.p</td>
<td>2.64±0.51</td>
</tr>
<tr>
<td>Group III</td>
<td>Gg 75mg/kg/p.o</td>
<td>27.19±2.47*</td>
</tr>
<tr>
<td>Group IV</td>
<td>Gg 150mg/kg/p.o</td>
<td>43.31±1.43**</td>
</tr>
<tr>
<td>Group V</td>
<td>Gg 300mg/kg/p.o</td>
<td>27.78±3.32*</td>
</tr>
<tr>
<td>Group VI</td>
<td>Gg 150mg+Diazepam7mg/kg/i.p</td>
<td>39.78±1.63**</td>
</tr>
</tbody>
</table>

n=6; Values are expressed as Mean ± SEM; *p<0.05, **P<0.01 (ANOVA followed by Dunnett’s multiple comparison test); Gg: Glycyrrhiza glabra

Graph 1: Probe Trail (Retention) of the Morris water maze task for 2 Weeks duration

n=6; Values are expressed as Mean ± SEM.
A- Control; B- Diazepam 7mg/kg/i.p; C- Gg 75mg/kg/p.o; D- Gg 150 mg/kg/p.o;
E- Gg 300mg/kg/p.o; F- Gg 150mg+Diazepam7mg/kg/i.p

DISCUSSION

Dementia is collection of symptoms that include decreased intellectual functioning that interferes with normal life functions and is usually used to describe people who have two or more major life functions impaired or lost such as memory, language, perception, judgment or reasoning; they may lose emotional and behavioral control, develop personality changes and have problem solving abilities reduced or lost. Dementia may be static, the result of a unique global brain injury, or progressive, resulting in long-term decline in memory due to damage or disease.

Nootropics also referred to as smart drugs, memory enhancers, neuro enhancers, cognitive enhancers, and intelligence enhancers,
are drugs, supplements, nutraceuticals, and functional foods that improve mental functions such as cognition, memory, intelligence, motivation, attention, and concentration.

The therapeutic value of medicinal plants depends upon the presence of one or more constituents possessing certain physiological and pharmacological activity. As for date only limited herbal drugs the effect learning and memory are available with valid scientific data especially as monotherapies. An ayurvedic preparation called Abana contains various herbal ingredients among which the one of the ingredient is G. Hence present study was selected to evaluate the contribution of aqueous root extract of Gg for its learning and memory enhancing activity in 2 weeks old Wistar albino rats.

In the present study aqueous root extract of Gg administered orally for 2 weeks improved learning and memory of three months old rats significantly in both the exteroceptive and interocceptive behavioral models employed. The stimulus outside the body in exteroceptive behavior models (Elevated plus maze and Morris water maze), whereas, it lies within the body in the case of interocceptive models (Diazepam). All the doses of aqueous root extract of Gg (75, 150, 300mg/kg, p.o) given for 2 weeks in three months old rats improved the memory as reflected by diminished TL compared to control animals. Furthermore pretreatment with aqueous root extract of Gg given for 2 weeks protected the animals from learning and memory impairment produced by interocceptive stimuli (Diazepam). Additionally, the aqueous root extract of Gg in the dose of 150mg/kg significantly (p<0.01) increased learning and memory in rats compared to control.

Antioxidant-based drugs or formulations are used for the treatment of complex diseases like atherosclerosis, stroke, diabetes, Alzheimer’s disease. In view of this, the neuroprotective effect aqueous root extract of Gg may be attributed to its antioxidant property by the virtue of which susceptible brain cells get exposed to less oxidative stress resulting in reduced brain damage and improved neuronal function.

CONCLUSION

Based on our results obtained, the aqueous root extract of Gg has shown cognitive enhancing activity in all the selected doses, but it is more significant in the dose of 150mg/kg. However further extensive studies are needed to know the exact mechanism of action as a potent and efficacious nootropic agent.

REFERENCES