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ABSTRACT 

Hormone-responsive breast cancer is one of leading cause of cancer death world wide in the women community. The female sex hormone estrogen 
primarily controls the development of female sex characteristics including division of breast cell. This hormone exerts its effects after binding to 
estrogen receptor (ER), which is nuclear-activated transcription factor. The present study is considered to explore important pharmacophore signals for 
binding affinity of estrogen ligands using molecular field (CoMFA) and similarly analyses (CoMSIA), substantiated with molecular docking study. Both 
CoMFA (R2=0.974, se=0.240, Q2=0.589, R2 pred=0.612) and CoMSIA (R2=0.997, se=0.088, Q2=0.703, R2 pred
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=0.624) models suggest that steric and 
electrostatic factors are crucial for binding affinity. Further, the similarity analysis and docking studies revealed that hydroxyl and alkyl groups are 
important for formation of potential interactions at the active site cavity of the ER.  

 

INTRODUCTION 

The estrogen belongs to the sex steroid hormones, secreted by the 
ovaries and testis with involvement of placenta, adipose tissue, and 
adrenal glands1. Among the several structurally related forms 17β-
estradiol is found as predominant. Estrogen plays crucial role in female 
reproductive system and also exerts important effects on 
nonreproductive targets such as bone, cardiovascular system and 
neural sites involved in cognition2. It is also reported that estrogen 
influence the brain centers that maintain body temperature, and 
enable the vaginal lining to stay thick and lubricated3. Due to loss of 
estrogen production after menopause, hot-flushes, vaginal atrophy and 
sleeping disturbance arise, and also rise of low-density lipoprotein 
(LDL) that progressively increases the chance of coronary and 
osteoporosis diseases1. The hormone replacement therapy (HRT) in 
which synthetic estrogens are administered into the body that reduce 
osteoporotic fractures and improve severe menopausal symptoms4, 
but on other hand malevolent aspect of HRT is increasing chance of 
breast and uterin cancers5,6. Presently there are three strategy for 
treatment of hormone-responsive breast cancer, such as inhibition 
estrogen from binding to its main target estrogen receptor (ER) using 
antiestrogen, e.g. tamoxifen7; preventing its synthesis using aromatase 
inhibitor8; and down-regulating ER protein level using pure 
antiestrogen, e.g. fulvesteron9

Estrogen mediates its biochemical mechanism in target tissues after 
binding to intracellular receptor proteins ER

. 

10,11, which is a nuclear 
ligand-activated transcription factor12. ER constituted similar 
architecture to the other 50-60 members of the steroid/thyroid 
hormone receptor family12-14 and comprises six distinct domains A–F. 
The ligand binding domain (LBD) consisting E/F domain at the carboxy 
terminal and responsible for ligand binding, receptor dimirization, 
nuclear translocation and transactivation of target gene expression via 
activation function – 2 (AF-2)13,14. The AF-2 region comprises of 12α-
helices, which form a hydrophobic pocket responsible for binding of 
ligand15 and fundamental in distinguishing between agonist and 
antagonist functions16 of ER. Knowledge of ER has permitted the 
modeling of estrogenic activity using different chemometric 
techniques. The structural requirement for binding of steroid to ER is 
essential both for design of new drug and to evaluate the health risk of 
chemical of ER affinity17. The chemometric drug design (CDD) is widely 

used to design lead molecules involving two important techniques, 
ligand-based and structure-based approaches. When the properties of 
the ligands are analyzed without any information of receptor site is 
known as ligand-based drug design (LBDD), while the ligands are 
designed with help of receptor site is called structure-based drug 
design (SBDD). Researchers are devoted to search potent molecules for 
treatment of post-menopausal diseases using both LBDD and SBDD 
approaches. Our group has explored the prime pharmacophore signals 
for estrogen mediated bioactivities of different groups of structural 
congeneric compounds through Quantitative Structure Activity 
Relationships (QSAR) studies18-21. Molecular docking and QSAR studies 
of estrogen ligands are also explored for potent antiestrogens in 
several studies22,23. On the availability of the crystal structure of active 
site both ligand-based and structure-based studies will be powerful 
methods to design lead compound. The present work is considered to 
explore both approaches for a set of structurally diverse 
compounds24,25

MATERIALS AND METHODS 

 with respect to binding affinity to ER. 

The main objective of the work is to find out correlation between 
chemical structure with biological activity of the molecules using 
Partial Least Square (PLS) method and potential interactions between 
ligand and active site of the receptor molecule. The binding affinity for 
QSAR study is expressed as kRBA=log10(100xRBA). The dataset (Table 
1) is randomly divided into training set (ntr=25) containing most and 
least active compounds, and test set (nts=10) to validate the derived 
models in QSAR study. The different control parameters are used to 
check the superiority of 3D QSAR models are: R2 (correlation 
coefficient), se (standard error of estimate), Cross-validated variance 
(CVV) Q2 (Leave-One-Out (LOO) cross-validated26 correlation), F 
(variance ratio) with df (degree of freedom), R2 bs  (bootstrapped 
correlation coefficient) and sb  (standard error of bootstrapped 
correlation). To evaluate the predictive power of the model, R2 pred  and 
sp  (standard error of prediction) of the test set are also estimated. In 
case of docking study GlideScore27

3D QSAR 

 and interactions between ligand and 
receptor are considered for best pose selection. 

QSAR is mathematical robust model which attempts to find a 
statistically significant correlation between chemical structure and 
biological activity28. 3D QSAR is a ligand-based approach which 
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includes Comparative Molecular Field Analysis (CoMFA)29 and 
Comparative Molecular Similarity Indices Analysis (CoMSIA)30, and 
both analysis techniques reported as effective for understanding of 
structure-activity relationship, useful to predict the biological activity 
before synthesis and animal experiment31, lead optimization and drug-
target interaction. In molecular field analysis (CoMFA), steric and 
electrostatic interaction energies32 are calculated using Lenad-Jones 

and Coulombic potentials, and correlated with biological activity of the 
molecules. In case of CoMSIA study, similarity indices are calculated at 
regularly placed grid points of the aligned molecules, and additionally 
hydrogen bond (HB) acceptor and donor along with hydrophobic fields 
are incorporated33

 

. The contour maps of both methods are used to get 
general insights into the topological features of the binding site. 

Table 1: Observed and predicted relative binding affinity (RBA) to the receptor of estrogen ligand 

Comp. 
No. 

Ligand Smiles Obs. Predicted 
activity (CoMFA) 

1 Predicted activity 
(CoMSIA) 

Glide 
Score 

1 
OH

HO  
CC12CCC3C(CCc4cc(ccc43)O)C2CCC1O 100.000 95.280 86.696 -8.420 

2 
OH

HO  CC\C(\c1ccc(cc1)O)=C(\CC)/c1ccc(cc1)O 288.400 133.968 194.536 -8.810 
3 

HO

HO  
CC/C(/c1ccc(cc1)O)=C(\CC)/c1ccc(cc1)O 0.790 0.418 0.427* -5.600 * 

4 
OH

HO  C/C(=C(/C)\c1ccc(cc1)O)/c1ccc(cc1)O 33.110 19.770 34.834 -6.670 * 
5 

HO

OH  
CC\C(\c1ccc(cc1)O)=C(\CC)/c1ccc(c(c1)O)O 100.000 99.083 104.472 -11.170 

6 
HO

OH

OH

OH

 
CC\C(\c1ccc(c(c1)O)O)=C(\CC)/c1ccc(c(c1)O)O 25.120 133.968 19.454 -10.250 * 

7 
OH

HO  
C/C=C(/c1ccc(cc1)O)\C(=C/C)\c1ccc(cc1)O 0.300 0.308 0.299 -6.240 

8 
OH

HO  
C\C=C(/c1ccc(cc1)O)\C(=C\C)\c1ccc(cc1)O 19.950 12.647 8.913* -6.230 * 

9 
OH

HO  
CCC1C(C(C)c2cc(ccc12)O)c1ccc(cc1)O 2.000 1.069 2.158 -9.730 

10 
HO

OH

 
CCC1=C(Cc2cc(ccc12)O)c1ccc(cc1)O 13.800 15.311 10.520 -9.330 

11 
HO

OH

 
CCC1=C(C(C)c2cc(ccc12)O)c1ccc(cc1)O 100.000 28.119 162.555* -8.780 * 

12 
HO

OH

 
CCC1=C(C(C)c2cc(ccc12)O)c1ccc(cc1)O 141.250 83.176 83.176* -9.660 * 

13 
HO  

CCC1=C([C@@H](C)c2cc(ccc12)O)c1ccccc1 1.820 1.954 1.429* -9.040 * 

14 
HO  

CCC1=C([C@H](C)c2cc(ccc12)O)c1ccccc1 0.200 0.084 0.331 * -9.070 

15 
HO  

CCC1=C([C@@H](C)c2ccccc12)c1ccc(cc1)O 5.620 4.721 6.950 * -8.120 

16 
HO  

CCC1=C([C@H](C)c2ccccc12)c1ccc(cc1)O 0.890 0.226 1.028 -8.500 * 

17 
HO

OH

 
CCC1=C([C@@H](C)c2cc(ccc12)O)c1ccc(cc1)O 288.400 326.588 304.790 -8.7100 

18 
HO

OH

 
CC[C@H]1c2cc(ccc2C(=C1c1ccc(cc1)O)CC)O 295.102 230.144 301.995 -10.110 

19 
HO

OH

 
CCC[C@H]1c2cc(ccc2C(=C1c1ccc(cc1)O)CC)O 22.090 208.449 182.390 -12.180 

20 
HO

OH

 
CCCC[C@H]1c2cc(ccc2C(=C1c1ccc(cc1)O)CC)O 177.803 131.220 231.740 -12.410 

21 
HO

OH

 
CCC1=C([C@H](C)c2cc(ccc12)O)c1ccc(cc1)O 12.880 28.119 16.255 -9.530 

22 
HO

OH

 
CC[C@@H]1c2cc(ccc2C(=C1c1ccc(cc1)O)CC)O 10.960 20.464 16.218 * -9.850 

23 
HO

OH

 
CCC[C@@H]1c2cc(ccc2C(=C1c1ccc(cc1)O)CC)O 18.200 63.241 17.906 -10.990 

24 
HO

OH

 
CCCC[C@@H]1c2cc(ccc2C(=C1c1ccc(cc1)O)CC)O 7.940 6.442 7.691 -12.120 

25 
OH

HO  
Oc1ccc(cc1)c1ccc(cc1)O 0.020 0.069 0.017 -7.580 

26 
HO

O

 
CCC(=O)c1ccc(cc1)O 0.100 0.062 0.101 -5.600 

27 
HO

OH  

CCc1c(c2ccc(cc2c2cc(ccc12)O)O)CC 0.160 0.147 0.169 -7.010 

28 
HO  

Oc1ccc(cc1)c1ccccc1 0.020 0.017 0.019 -12.410 

29 
HO

OMe

 CC\C(=C(\CC)/c1ccc(cc1)O)\c1ccc(cc1)OC 19.950 15.241 22.491 -8.240 
30 HO

OH

OMe  CC/C(=C(/CC)\c1ccc(c(c1)OC)O)/c1ccc(cc1)O 10.000 21.727 8.670 * -9.650 
31 

HO

OH

OH

H

H

H

 
CC12CCC3C(CCc4c(c(ccc43)O)O)C2CC[C@@H]1O 52.900 42.170 60.117 -10.480 * 

32 
HO

OH

H

H

H

HO

 
CC12CCC3C(CCc4cc(c(cc43)O)O)C2CC[C@@H]1O 22.400 63.826 22.751 * -11.290 

33 
HO

OH

H

H

H OH

 
CC12CCC3C(CCc4cc(ccc43)O)C2C[C@@H](O)[C@@H]1O 9.720 13.062 9.931 -8.690 

34 
HO

O

H

H

H

 
CC12CCC3C(CCc4cc(ccc43)O)C2CCC1(O)C#C 190.000 133.045 179.473 -10.250 
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35 
HO

H

H

H

O

 
CC12CCC3C(CCc4cc(ccc43)O)C2CCC1=O 7.310 8.630 6.918 -8.900 

1Observed activity24,25; *test compounds 

To develop robust CoMFA/CoMSIA models, conformer selection and 
molecular alignment are important factors. The molecules of data set 
are expected to be aligned against each other to maximize the overlap 
of the pharmacophores to generate molecular fields correctly34. If the 
crystal structure of target proteins is available then molecular docking 
is the solution of alignment of molecules for development of 3D QSAR 
models. It is reported that docking conformers are appropriately 
aligning the ligands and developing reliable QSAR models35,36. As 
crystal structure of ER are available in RCSB Protein Data Bank37, 
combination of molecular docking and 3D QSAR approach would be 
desired for development of potent ER ligands. Individual molecules of 
dataset are docked with crystal structure of ER (PDB ID: 3OMO38) 
respectively obtained from Protein Data Bank37, and best docked 
conformer of each compound has been considered for 3D QSAR 
studies. In case of CoMFA, fields are generated using steric (‘s’) and 
electrostatic (‘e’) interactions, and calculated on a regular space grid of 
3Å. Values of the field are truncated at 30.0 kcal/mol. Partial atomic 
charges are calculated by the Gasteiger–Huckel method39. In case of 
CoMSIA, ‘s’, ‘e’ and hydrophobic (‘p’) parameters are considered 
together with hydrogen bond (HB) acceptor (‘a’) and donor (‘d’) 
factors. 

Molecular Docking 

In molecular docking method, ligand interacts to the protein or 
nucleic acid target and provides a conceptual frame work for 
designing the desired potency and specificity of potential drug leads 
for a given therapeutic target. Main objective of docking procedures 
is to identify correct poses of ligands in the binding pocket of a 
protein and to predict the affinity between the ligand and protein. A 
number of algorithms40,41 can be used for docking which include 
matching ligand and receptor complementary surfaces or the 
calculation of the ligand-receptor interaction energies. The method 
validates ligand-receptor interacting ability by the calculation of 
scoring functions. Docking can be performed by placing rigid 
molecules or fragments into the protein’s active site using different 
approaches like clique-search42, geometric hashing43 or pose 
clustering44

Molecular docking of the data set is performed to understand 
detailed binding modes of ligands to ER. In the present study, the 
Grid-Based Ligand Docking with Energetics (Glide) algorithm that 
approximates a systematic search of positions, orientations, and 
conformations of the ligand in the receptor binding site using a 
series of hierarchical filters

. 

27,45,46 are used. The grid represents the 

shape and properties of the receptor by several different sets of 
fields, computed prior to docking and provides progressively more 
accurate scoring of the ligand pose. The binding site is defined by a 
rectangular box which keeps the mass centre of the ligand within the 
box. Conformers are generated through an exhaustive search of the 
torsional minima, and the conformers followed by clustered in a 
combinatorial fashion. After that each cluster, characterized by a 
common conformation of the “core” and an exhaustive set of 
“rotamer group” conformations, is docked as a single object in the 
first stage27. Narrows the search space and reduces the number of 
poses due to searching with a rough positioning and scoring phase 
and retain only hundreds. Further the selected poses are minimized 
on pre-computed OPLS-AA van der Waals and electrostatic grids for 
the receptor47. Finally about 5-10 lowest-energy poses obtained are 
subjected to a Monte Carlo procedure in which nearby torsional 
minima are examined, and the orientation of peripheral groups of 
the ligand is refined47. The score of the minimized poses is rescored 
using the GlideScore function along with force field-based 
components and additional terms accounting for solvation and 
repulsive interactions. The best pose considered using a model 
energy score (Emodel) that combines the energy grid score, 
GlideScore, and the internal strain of the ligand27

The best model (R

.  

RESULTS AND DISCUSSION 

3D QSAR 

CoMFA 

2=0.974, se=0.240, Q2=0.589, R2 pred=0.612) for field 
analysis is obtained with contribution of ‘s’ (42.60%) and ‘e’ 
(57.40%) factors (Fig. 1A). The statistical results are depicted in 
Table 2. The regions of green contour suggest that substituents 
imparting steric influence in these positions might improve the 
biological activity, while the yellow region indicates that an 
increased steric influence is unfavorable for the binding affinity. Two 
phenyl (‘A’ and ‘C’ in Fig. 1B) and one acyclic (‘B’) rings are sterically 
favorable for the binding interactions at the active site cavity, 
whereas rest of the surface areas are sterically unfavorable regions. 
Vicinity to the hydroxyl groups attached to the rings ‘A’ and ‘C’ (Fig. 
1B), and alkyl group attached to the ring ‘B’ impart the electronic 
charges are favorable for electrostatic interactions with the receptor. 
The observed vs. predicted activity is depicted in Fig. 2. Good 
predicted correlation value (R2 pred

 

=0.612) of the test compounds 
confirms the suitability of the model selection. 

 

 

 Steric:   Green favorable, yellow unfavorable 
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Electrostatic: Blue favorable, red unfavorable 

Hydrophobic:  Cyan favorable, White unfavorable 

Acceptor:   Magenta favorable, purple unfavorable 

Fig. 1: Mapped features of CoMFA (A) and CoMSIA (C) studies fitted with most active compound (B) of the dataset 

Table 2: Statistical results of 3D QSAR study of estrogen receptor ligands. 

Parameters CoMFA CoMSIA 
n 25 tr 25 
Components 5 7 
R 0.974 2 0.997 
se 0.240 0.088 
F(df) 112.906 

(6,18) 
705.654 
 (7,17) 

Contributions (%)   
s 0.426 0.133 
e 0.574 0.396 
p - 0.249 
a - 0.221 
Q 0.589 2 0.703 
R2 0.989 bs 0.999 
s 0.169 bs 0.050 
R2 0.612 pred 0.624 
s 0.321 p 0.389 

 

Fig. 2: Observed vs. predicted binding affinity of estrogen receptor ligands as per CoMFA and CoMSIA studies. 
 

CoMSIA 

The best model (R2=0.997, se=0.088, Q2=0.703, R2 pred=0.624) for 
similarity study is obtained with combined contribution of ‘s’ 
(13.30%), ‘e’ (39.60%), ‘p’ (24.90%) and HB ‘a’ (22.10%) factors (Fig. 
1C). Phenyl rings ‘A’ and ‘C’ impart steric and hydrophobic properties 
of the molecule and favorable for formation of steric and hydrophobic 
interactions of the receptor site, but rest of the surface areas show 
unfavorable for both steric and hydrophobic properties. Due to 
increase of electron density surrounding the phenyl rings (‘A’ and ‘C’) 

show favorable for electrostatic interactions, but hydroxyl groups 
attached to same and alkyl group attached to the cyclopentane ring 
(‘B’) have negative influence for electrostatic factor. Hydroxyl groups 
attached to the phenyl rings are behaved as HB acceptors suggesting 
hydrogen bond interactions with amino acid residues at the active site. 
The observed vs. predicted activity is delineated in Fig. 2. Good 
correlation value (R2 pred

Molecular Docking 

=0.624) of the test compounds proves 
robustness of the CoMSIA Model.  
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Molecular docking is performed to visualize the potential interactions 
between ligand and catalytic residues of ER (PDB ID: 3OMO38

From Table 1, it is illustrated that comps. 20 and 28 have highest 
negative score -12.410 followed by comp. 24 (-12.120) and comp. 19 (-
12.180). Comps. 3 and 25 each give lowest negative score -5.600 
followed by comp. 8 (-6.230) and comp. 7 (-6.240). The most active 
compound (comp. 18) gives GlideScore of -10.110 and least active 
compounds (compds. 25 and 28) generate -7.580 and -12.410 
respectively.  

). The 
docking result is characterized on the basis of GlideScore (Table 1) and 
interactions observed at the active site cavity. The docked pose of most 
active compound (Comp. 18) is depicted in Fig. 3. Theoretically more 
negatively scoring compounds are better binders, and it is observed 
that all compounds in the data set docked at the active site with high 
negative score.  

 

Fig. 3: Molecular docking interactions at the binding site ER with most active compound (Comp. 18) 

 

The docked pose of comp. 18 (Fig. 3) explain that polar Trp335 and 
His475, and non-polar Leu298 and Ile373 are catalytic residues at the 
active site revealed as crucial for binding interactions. Presence of 
electronegative hydroxyl group attached to ring ‘A’ interacts with 
His475 and Ile373 by forming potential hydrogen bonding, whereas 
hydroxyl group attached to ring ‘C’ is formed HB interaction with 
Trp335. The bulky alkyl group attached to ring ‘B’ generates the 
hydrophobic core also found crucial for interaction with non-polar 
residue Leu298. 

The docking study also correlates the functionality developed in 3D 
QSAR and space modeling48 studies. The rings ‘A’ and ‘C’ found as 
sterically and electrostatically favorable in CoMFA study, 
additionally ring ‘B’ revealed as important for steric interaction. 
Similarly rings ‘A’ and ‘C’ are important for steric, hydrophobic and 
electrostatic interactions in CoMSIA study. Moreover hydroxyl 
groups attached to the phenyl rings ‘A’ and ‘C’ act as HB acceptors for 
interaction with active site cavity for both CoMSIA and space 
modeling48 studies. Bulky alkyl group attached to ring ‘B’ imports 
hydrophobicity also depicted in pharmacophore study48

CONCLUSION 

. 
Observations in both 3D QSAR and space modeling studies are 
substantiated by the HB interactions between hydroxyl group 
attached to rings ‘A’ and ‘C’ with Trp335 and, Ile373 and His475 
respectively, whereas hydrophobic interaction portrayed between 
alkyl group attached at ring ‘B’ and Leu298.  

In the present work, CoMFA and CoMSIA approaches of 3D QSAR and 
molecular docking studies are adopted to rationalize the ER binding 
affinity and molecular interactions of structurally diverse estrogen 
receptor ligands. The 3D QSAR studies revealed that steric and 
electrostatic features are prime factors for binding affinity. Both field 
and similarity analyses models show good predictive ability to test 
compounds. The contour maps show good compatibility with the 

receptor properties and explain the crucial regions for steric, 
electrostatic, hydrophobic and HB interaction with the receptor site. 
The significant GlideScore supports that molecules of the data set are 
successfully interacted with right conformation. The docked poses 
illustrate that hydroxyl and alkyl groups present in the molecular 
system are important for binding interaction. 
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