ANTIOXIDANT, ANTIHYPERLIPIDAEMIC AND ANTIDIABETIC ACTIVITY OF EUGENIA SINGAMPATTIANA BEDD LEAVES IN ALLOXAN INDUCED DIABETIC RATS

S. MARY JELASTIN KALA1, P.S. TRESINA2 AND V.R. MOHAN*2
1Department of Chemistry, St. Xavier’s College, Palayamkottai, 2Ethnopharmacology Unit, Research Department of Botany, V.O.Chidambaram College, Tuticorin-628008, Tamil Nadu, India. Email: vrmohan_2005@yahoo.com

Received: 23 Jan 2012, Revised and Accepted: 21 Mar 2012

ABSTRACT
The ethanol extract of Eugenia singampattiana Bedd (Family: Myrtaceae) leaf was investigated for its antioxidant, antihyperlipidaemic and antidiabetic effect in Wistar Albino rats. Diabetes was induced in Albino rats by administration of alloxan monohydrate (150mg/kg, ip). The ethanol extracts of E. singampattiana at a dose of 150 and 300mg/kg of body weight were administered at single dose per day to diabetes induced rats for a period of 14 days. The effect of ethanol extract of E. singampattiana leaf extract on blood glucose, plasma insulin, creatinine, glycosylated haemoglobin, area serum lipid profile [total cholesterol (TR), triglycerides (TG), low density lipoprotein – cholesterol (LDL-C), very low density lipoprotein – cholesterol (VLDL-C), high density lipoprotein – cholesterol (HDL-C) and phospholipid (PL)] serum protein, albumin, globulin, serum enzymes [serum glutamate pyruvate transaminases (SGPT), and serum glutamate oxaloacetate transaminases (SGOT), and alkaline phosphatase (ALP)], lipoprotein peroxidation (LPO) antioxidant enzymes [catalase (CAT), superoxide dismutase (SOD), reduced glutathione (GSH) and glutathione peroxidase (GPX)] were measured in the diabetic rats. The ethanol extract of Eugenia singampattiana leaf elicted significant reductions of blood glucose (P<0.05), lipid parameters except HDL-C, serum enzymes and significantly increased HDL-C and antioxidant enzymes. The extracts also caused significant increase in plasma insulin (P<0.05) in the diabetic rats. From the above results, it is concluded that ethanol extract of Eugenia singampattiana possesses significant anti diabetic, antihyperlipidaemic and antioxidant effects in alloxan induced diabetic rats.

Keywords: Antioxidant, Antihyperlipidaemic, Antidiabetic, E. singampattiana, Alloxan.

INTRODUCTION
Diabetes mellitus is a metabolic disorder characterized by hyperglycemia resulting from defects in insulin secretion, insulin action or both. The presence of diabetes mellitus confers increased risk of many devastating complications such as cardiovascular diseases (CVD), peripheral vascular disease (PVD), complications such as coronary artery disease (CAD), stroke, neuropathy, renal failure, retinopathy amputations and blindness. Several drugs such as biguanides and sulfonylureas are presently available to reduce hyperglycaemic in diabetes mellitus. The main disadvantages of the currently available drugs are that, they have to be given throughout the life and produce side effects. Medicinal plants and their bioactive constituents are used for the treatment of diabetes mellitus throughout the world. Although several medicinal plants have gained importance for the treatment of diabetes, many remain to be scientifically investigated.

E. singampattiana Bedd belong to the family Myrtaceae. It is commonly known as “Kattukondu” by Kanikkar tribals of Agasthiamalai Biosphere Reserve, Western Ghats, Tamil Nadu, India. The paste prepared from the leaf of E. singampattiana is given to treat asthma and giddiness. Paste prepared from equal quantity of leaves and flowers is consumed by Kanikkar tribals to cure body pain and throat pain. Paste prepared from equal quantity of leaves, flowers and tender fruits are consumed by the Kanikkar to relieve from leg sores and rheumatism. Paste prepared from equal quantity of stems, leaves and flowers is consumed with palm sugar to get relief from gastric complaints. The ethanol extract of E. singampattiana leaf has been reported for its antitrempour activity. In view of the above medicinal properties, the present study was designed to investigate the antidiabetic, antihyperlipidaemic and antioxidant activity of ethanol extract of E. singampattiana leaf in alloxan induced diabetic rats.

MATERIALS AND METHODS

Plant Material
The leaves of Eugenia singampattiana Bedd were freshly collected from the well grown healthy plants inhabiting the natural forests of Karaiyar, Agasthiamalai Biosphere Reserve, Western Ghats, Tamil Nadu. The plant were identified and authenticated in Botanical Survey of India, Southern Circles, Coimbatore, Tamil Nadu, India. A voucher specimen was deposited in Ethnopharmacology Unit, Research Department of Botany, V.O.Chidambaram College, Tuticorin, Tamil Nadu.

Preparation of plant extract for phytochemical screening and antidiabetic studies
The E. singampattiana leaves were shade dried at room temperature and the dried leaves were powdered in a Wicky mill. Hundred grams of powdered E. singampattiana leaves was packed in a Soxhlet apparatus and extracted with ethanol. The extract were subjected to qualitative test for the identification of various phytochemical constituents as per the standard procedures. The ethanol extracts were concentrated in a rotary evaporator. The concentrated ethanol extract were used for antidiabetic studies.

Animals
Normal healthy male Wistar albino rats (180- 240g) were housed under standard environmental conditions at temperature (25±2°C) and light and dark (12: 12 h). Rats were fed with standard pellet diet (Goldmohur brand, MS Hindustan lever Ltd., Mumbai, India) and water ad libitum.

Acute Toxicity Study
Acute oral toxicity study was performed as per OECD – 423 guidelines (acute toxic class method), albino rats (n=6) of either sex selected by random sampling were used for acute toxicity study. The animals were kept fasting for overnight and provided only with water, after which the extracts were administered orally at 5mg/kg body weight. If mortality was observed in two out of three animals, then the dose administered was assigned as toxic dose. If mortality was observed in one animal, then the same dose was repeated again to confirm the toxic dose. If mortality was not observed, the procedure was repeated for higher doses such as 50,100, and 2000 mg/kg body weight.

Induction of Experimental Diabetes
Rats were induced diabetes by the administration of simple intraperitoneal dose of alloxan monohydrate (150 mg/kg) . Two days after alloxan injection, rats screened for diabetes having glycosuria and hypoglycemia with blood glucose level of 200-260 mg/100 ml were taken for the study. All animals were allowed free
access to water and pellet diet and maintained at room temperature in plastic cages.

Experimental Design

In the present investigation, a total of 30 rats (24 diabetic surviving rats and 6 normal rats) were taken and divided into five groups of 6 rats each.

Group I: Normal untreated rats
Group II: Diabetic control rats
Group III: Diabetic rats given ethanol extract of E. singampattiana leaf (150mg/kg body weight)
Group IV: Diabetic rats given ethanol extract of E. singampattiana leaf (300mg/kg body weight)
Group V: Diabetic rats given standard drug glibenclamide (60mg/kg body weight).

Biochemical analysis

The animals were sacrificed at the end of experimental period of 14 days by decapitation. Blood was collected, sera separated by centrifugation at 3000g for 10 minutes. Serum glucose was measured by the O-toluidine method. Insulin level was assayed by Enzyme Linked Immunosorbant Assay (ELISA) kit. Urea estimation was carried out by the method of Varley; serum creatinine was estimated by the method of Owen et al. Glycosylated haemoglobin (HBA1C) estimation was carried out by a modified colorimetric method of Karunayake and Chandrasekarhan. Total serum cholesterol (TC), total triglycerides (TG), low density lipoprotein cholesterol (LDL-C), very low density lipoprotein cholesterol (VLDL-C) high density lipoprotein cholesterol (HDL-C) and phospholipids were analyzed. Serum protein and serum albumins were determined by quantitative colorimetrically method by using bromocresol green. The total protein minus the albumin gives the globulin, serum glutamate pyruvate transaminase (SGPT) and serum glutamate oxaloacetate transaminase (SGOT) was measured spectrophotometrically by utilizing the method of Reitman and Frankel. Serum alkaline phosphatase (ALP) was measured by the method of King and Armstrong; serum creatinine was carried out by the method of Varley; serum glucose was estimated by the method of Owen et al. Insulin level was assayed by Enzyme Linked Immunosorbant Assay (ELISA) kit.

RESULTS AND DISCUSSION

The phytochemical screening of ethanol extract of E. singampattiana leaf revealed the presence of alkaloid, catechin, coumarin, tannin, saponin, steroid, flavonoid, phenol, sugar, glycoside, xanthoprotein and fixed oil. Acute toxicity study revealed the non-toxic nature of the ethanol extract of E. singampattiana leaf. Table 1 shows the levels of blood glucose, plasma insulin, urea, creatinine and glycosylated haemoglobin of normal, diabetic rats and drug treated rats. The alloxan induced diabetic rats elicited significant rise in blood glucose from 69.50 to 210.00mg/dl (p<0.05) and a significant decrease in plasma insulin level from 24.50 to 5.40 (p<0.01). On the contrary, diabetic rats treated with ethanol extract of E. singampattiana leaf exhibited decrease in blood glucose and increase in plasma insulin significantly at a dose of 150 mg/kg and 300 mg/kg body weight. It was observed that ethanol extract of E. singampattiana reversed these effects in diabetic animals. The possible mechanism by which ethanol extract brings about its hypoglycemic action may be by induction of pancreatic insulin secretion from β cells of islets of langerhans or due to enhanced transport of blood glucose to peripheral tissue. Earlier many plants have been studied for their hypoglycemic and insulin release stimulatory effects.

A significant elevation in serum constituents, urea and creatinine were observed in alloxan induced diabetic rats (Group II), when compared to control rats. The ethanol extracts of E. singampattiana leaves were administered orally (150 mg/kg body weight- Group III and 300mg/kg body weight- Group IV) to rats for fourteen days, reversed the urea and creatinine level to near normal. The administration of glibenclamide (Group V) also decreased the levels of urea and creatinine to some extent. Alloxan is taken as indications of an abnormal glomerular fraction where a simple injection of cisplatin at a dose of 5mg/kg body weight in rabbits caused a marked reduction in the glomerular filtration rates, which was accompanied by an increase in the creatinine level, indicating the induction of acute renal failure. It is confirmed that there is a significant increase in serum creatinine in albino rats 14 days after alloxan administration. The present results show that, the treatment with ethanol extract of E. singampattiana leaf was effective in preventing alloxan induced increase in serum creatinine level when compared with the control. Alloxan induced diabetic rats showed significant increase (p<0.05) glycosylated haemoglobin (HBA1C) level compared with normal rats. The ethanol extract of E. singampattiana leaf treated rats showed a significant decrease (p<0.05) in the content of glycosylated haemoglobin. Glycosylated haemoglobin determinations are self monitoring of blood glucose therefore play an important complementary roles for the management of diabetes mellitus.

Table 1: Effect of ethanol extracts of E. singampattiana leaves on the serum insulin, glucose, urea, creatinine and HBA1C level of normal, diabetic induced and drug treated adult albino rats.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Group I</th>
<th>Group II</th>
<th>Group III</th>
<th>Group IV</th>
<th>Group V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulin (Miu/ml)</td>
<td>24.50 ± 1.4</td>
<td>05.40 ± 0.6**</td>
<td>10.90 ± 0.7*</td>
<td>19.20 ± 0.9*</td>
<td>22.50 ± 0.8*</td>
</tr>
<tr>
<td>Glucose (mg/dl)</td>
<td>69.50 ± 1.2</td>
<td>201.00 ± 12.2*</td>
<td>103.50 ± 4.6*</td>
<td>81.60 ± 5.4**</td>
<td>91.50 ± 6.9*</td>
</tr>
<tr>
<td>Urea (mg/dl)</td>
<td>11.50 ± 1.9</td>
<td>39.50 ± 5.6*</td>
<td>28.40 ± 2.1*</td>
<td>14.20 ± 5.6*</td>
<td>12.70 ± 1.9*</td>
</tr>
<tr>
<td>Creatinine (mg/dl)</td>
<td>0.61 ± 0.8</td>
<td>1.72 ± 0.7</td>
<td>0.72 ± 0.4</td>
<td>0.69 ± 0.7</td>
<td>0.81 ± 0.5</td>
</tr>
<tr>
<td>Glycosylated Hb (%)</td>
<td>3.60 ± 0.05</td>
<td>12.50 ± 1.1*</td>
<td>9.10 ± 0.91*</td>
<td>8.30 ± 0.8*</td>
<td>4.90 ± 0.7</td>
</tr>
</tbody>
</table>

Each value is SEM of 6 animals. Comparison made between normal control to diabetic control and drug treated groups * p< 0.05; **p<0.01 and comparison made between diabetic control to drug treated groups * p<0.05; **p<0.01

The levels of serum protein, albumin and globulin of control, alloxan induced diabetic rats and drug treated rats were presented in Table 2. A significant reduction in serum protein, albumin and globulin were observed in alloxan induced diabetic rats (Group II) when compared to control (Group I) and glibenclamide treated rats (Group V). On administration of ethanol extract of E. singampattiana to the diabetic rats, the levels of protein, albumin and globulin were found to be restored in normal. These results were in accordance with the effects of Wattakaka volubilis, Senna auriculata and Pterocarpus marsupium in diabetic rats.
The restorations of SGPT and SGOT to their respective normal levels after treatment with both glibenclamide and ethanol extract of *E. singampattiana*, further strengthen the anti-diabetic effect of this extract. Moreover, SGPT and SGOT levels also act as indicators of liver function and restoration of normal levels of these parameters indicate normal functioning of liver. Since the alloxan can also affect the liver by free radical mechanism.

In addition to the assessment of SGPT and SGOT levels during diabetes the measurement of enzymatic activities of phosphatases such as acid phosphatase (ACP) and alkaline phosphatase (ALP) is of clinical and toxicological importance as changes in their activities are indicative of tissue damage by toxicants. In the present study, ALP increased in alloxan induced diabetic rats (Table 2). Elevated level of this enzyme in diabetes may be due to excessive damage to liver in the experimental animal by alloxan. Treatment with ethanol extract of *E. singampattiana* in alloxan induced diabetic rats produces a decline in ALP level.

Table 2: Effect of ethanol extracts of *E. singampattiana* leaves on the serum protein, albumin, globulin, SGOT, SGPT and ALP level of normal, diabetic induced and drug treated adult albino rats

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Protein (g/dl)</th>
<th>Albumin (g/dl)</th>
<th>Globulin (g/dl)</th>
<th>SGPT (u/l)</th>
<th>SGOT (u/l)</th>
<th>ALP (u/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I</td>
<td>8.94±0.11</td>
<td>4.14±0.04</td>
<td>4.87±0.11</td>
<td>19.20±3.2</td>
<td>21.40±3.3</td>
<td>16.5±5.4</td>
</tr>
<tr>
<td>Group II</td>
<td>6.51±0.71*</td>
<td>3.91±0.35</td>
<td>2.65±0.08*</td>
<td>35.40±6.2*</td>
<td>35.30±5.9*</td>
<td>19.6±6.3</td>
</tr>
<tr>
<td>Group III</td>
<td>6.11±0.43*</td>
<td>3.91±0.24</td>
<td>3.21±0.02</td>
<td>32.40±5.1</td>
<td>25.40±5.9</td>
<td>17.2±4.5</td>
</tr>
<tr>
<td>Group IV</td>
<td>7.14±0.30</td>
<td>4.06±0.19</td>
<td>4.28±0.04</td>
<td>26.30±4.8</td>
<td>24.50±4.2</td>
<td>16.2±3.7</td>
</tr>
<tr>
<td>Group V</td>
<td>7.94±0.30*</td>
<td>4.11±0.32</td>
<td>3.83±0.04</td>
<td>16.50±4.8*</td>
<td>28.40±2.2</td>
<td>14.7±3.7</td>
</tr>
</tbody>
</table>

Each value is SEM of 6 animals. Comparison made between normal control to diabetic control and drug treated groups *p < 0.05.

Table 3: Effect of ethanol extracts of *E. singampattiana* leaves on the serum lipid profiles of normal, diabetic induced and drug treated adult albino rats

<table>
<thead>
<tr>
<th>Parameter</th>
<th>TC (mg/dl)</th>
<th>TG (mg/dl)</th>
<th>LDL-C (mg/dl)</th>
<th>VLDL-C (mg/dl)</th>
<th>HDL-C (mg/dl)</th>
<th>PL (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I</td>
<td>104.5±5.56</td>
<td>88.51±2.94</td>
<td>52.59±2.05</td>
<td>17.70±1.22</td>
<td>94.3±2.52</td>
<td>161.0±13.9</td>
</tr>
<tr>
<td>Group II</td>
<td>184.53±4.42*</td>
<td>206.53±4.14***</td>
<td>116.6±6.25*</td>
<td>41.3±3.45*</td>
<td>23.23±2.12*</td>
<td>281.6±3.22</td>
</tr>
<tr>
<td>Group III</td>
<td>156.23±5.91*</td>
<td>182.53±6.42*</td>
<td>91.56±6.27*</td>
<td>35.6±2.12*</td>
<td>21.90±1.88*</td>
<td>207.04±15.47*</td>
</tr>
<tr>
<td>Group IV</td>
<td>122.51±4.83</td>
<td>119.33±5.88*</td>
<td>65.41±3.25</td>
<td>23.86±2.33*</td>
<td>31.23±5.53</td>
<td>174.83±12.33</td>
</tr>
<tr>
<td>Group V</td>
<td>113.56±4.52</td>
<td>109.53±3.73*</td>
<td>62.34±4.12</td>
<td>21.90±1.88*</td>
<td>39.31±4.23</td>
<td>169.06±13.84***</td>
</tr>
</tbody>
</table>

Each value is SEM of 6 animals. Comparison made between normal control to diabetic control and drug treated groups *p < 0.05; **p < 0.01 ***p <0.001 and comparison made between diabetic control to drug treated groups <p<0.05."

The levels of serum lipid profile, total cholesterol (TC), triglycerides (TG), LDL-C, VLDL-C and HDL-C in control, diabetic induced and drug treated rats were presented in Table 3. Alloxan induced rats showed significant increase in serum lipid profile except HDL-C when compared with normal rats. The glublencide (Group V) and ethanol extract of *E. singampattiana* (Group III and IV) treated rats showed a significant decrease in the content of lipid profiles when compared with diabetic induced rats. Similarly HDL-C level decreased in alloxan induced diabetic rats when compared to normal rats. On administration of ethanol extract of *E. singampattiana* and glublencide to the diabetic rats, HDL-C level was found to be restored to normal. The level of serum lipid profiles are usually raised in diabetic rats in the present study and such effect may be due to inhibition of fatty acid synthesis. In normal metabolism insulin activates the enzyme lipoprotein lipase and hydrolyses triglycerides and the deficiency in insulin results in inactivation of these enzymes thereby causing hypertriglyceridemia. The significant reduction of serum lipid levels in diabetic rats after *E. singampattiana* treatment may be directly attributed to improvements in insulin levels. Phospholipids are present in cell membrane and make up vast majority of the surface lipoprotein forming a lipid bilayer that acts as an interface with both polar plasma environment and non-polar lipoprotein of lipoprotein core. Increased phospholipids levels in tissues were reported by Venkateswaran et al. Pari and Satheesh in streptozotocin diabetic rats. Administration of ethanol extract of *E. singampattiana* leaf and glublencide decreased the levels of phospholipids.

Table 4: Effect of ethanol extracts of *E. singampattiana* leaves on the LPO and activities of SOD, CAT, GPX and GSH enzymes in the plasma of normal, diabetic induced, and drug treated adult albino rats

<table>
<thead>
<tr>
<th>Parameter</th>
<th>LPO (mmole/dl)</th>
<th>SOD (unit x/mg protein)</th>
<th>CAT (unit y/mg protein)</th>
<th>GPX (unit z/mg protein)</th>
<th>GSH (mg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I</td>
<td>0.83±0.34</td>
<td>6.3±0.74</td>
<td>1.49±0.51</td>
<td>7.56±0.81</td>
<td>91.54±3.05</td>
</tr>
<tr>
<td>Group II</td>
<td>3.11±0.98*</td>
<td>4.56±0.54**</td>
<td>0.96±0.88</td>
<td>3.23±0.92**</td>
<td>27.31±2.86**</td>
</tr>
<tr>
<td>Group III</td>
<td>1.56±1.19*</td>
<td>5.2±0.42</td>
<td>1.36±0.99*</td>
<td>6.71±0.96*</td>
<td>32.56±1.35*</td>
</tr>
<tr>
<td>Group IV</td>
<td>1.31±0.98</td>
<td>6.3±0.15</td>
<td>1.43±0.31</td>
<td>7.23±0.71</td>
<td>86.14±1.85*</td>
</tr>
<tr>
<td>Group V</td>
<td>0.89±0.14</td>
<td>7.9±0.33</td>
<td>0.84±0.14</td>
<td>8.03±0.65*</td>
<td>87.40±5.18*</td>
</tr>
</tbody>
</table>

Each value is SEM of 6 animals. Comparison made between normal control to diabetic control and drug treated groups *p < 0.05;**p<0.01 and comparison made between diabetic control to drug treated groups <p<0.05."

The results (Table 4) showed increased lipid peroxidation (LPO) of alloxan induced diabetic rats. Earlier studies have reported that, there was an increased lipid peroxidation in liver, kidney and brain of diabetic rats. In the present study, an increase in the levels of LPO (p<0.05) was found and these levels were significantly reduced after the supplementation of the ethanol extract of *E. singampattiana* and glublencide. This indicates that plants extract inhibits oxidative damage due to the antiperoxidative effect of ingredients present in ethanol extract of *E. singampattiana*. This could be correlated with previous study reported that *Cassia auriculata* flower, *Scoparia dulcis*, *Wattakaka volubilis*, *Senna auriculata* and *Pterocarpus marsupium*.

The levels of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and reduced glutathione (GSH) (Table 4) were significantly (p<0.05) reduced in alloxan induced rats. These adverse changes were reversed to near normal values in ethanol extract of *E. singampattiana* leaf treated. It is well known that CAT, SOD and GPx play an important role as protective enzymes against free radical formation in tissues. Enzymatic antioxidant such as...
SOD and CAT are considered primary enzymes since they are involved in the direct elimination of ROS. SOD is an important defense enzyme and scavengers O$_2^-$ anion from H$_2$O$_2$ and hence diminishes the toxic effects due to this radical or other free radicals derived from secondary reaction. CAT is a haemoprotein, which catalyzes the reduction of hydrogen peroxides. The antioxidant enzymes such as SOD and CAT are known to be inhibited in diabetes mellitus as a result of enzymatic glycosylation and oxidation.

In the present study, the activities of SOD and CAT decreased in diabetic rats as reported earlier, which could be due to inactivation caused by alloxan generated ROS. The ethanol extract of *E. singampattiana* had reversed the activities of these enzymatic antioxidants, which might be due to decreased oxidative stress as evidenced by decreased LPO.

In conclusion, the present study has shown that, the ethanol extract of *E. singampattiana* leaf have antidiabetic, antihyperlipidaemic and antioxidant effects. The possible antidiabetic activity of the extracts might be due to stimulation of residual pancreatic insulin or by increasing peripheral utilization of glucose. Glycosides, flavonoids, tannins, organic sulphur compounds, catechol and alkaloids are active ingredients of hypoglycemic plant. Flavonoids are reported to regenerate the damaged pancreatic beta cells. Phenols have found to be effective antihyperglycemic agents. In the present study, the phytochemical analysis of ethanol extract of *E. singampattiana* clearly pointed out the presence of above said active phytochemicals. It indicates that, the antidiabetic effect of ethanol extract of *E. singampattiana* may be due to the presence of more than one antihyperglycemic principle and their synergistic effects.

ACKNOWLEDGEMENT

Thanks to Dr. Sampathraj, Honorary Advisor, Samsun Clinical Research Laboratory, Tirupur for their assistance in animal studies. The last two authors are thankful to University Grants Commission – New Delhi, for their financial support (Ref: No: 39-429/2010(SR) dated 7th JAN 2011).

REFERENCES

2. Rajaj JS and Madan R. Diabetes in tropics and developing countries. IDF Bull 38: 5-6.

