INTRODUCTION

Ancient Indian literature abounds with information on a large number of plants reported to have abortifacient, contraceptive and sterilizing properties. Numerous plants have been reportedly used historically by women to aid child delivery, stimulate menstrual flow or reduce fertility. Modern scientific studies in experimental animals have confirmed the effect of some of these herbs on the reproductive system. Scientific validity of the plants used by the tribal’s for the purpose of contraception such as abortion, may generate greater confidence and wider acceptance of herbal contraceptives.

Dolichandrone falcata L. Bignoniaceae, is a deciduous tree commonly known as Medshingi in local areas of Melghat region of Maharashtra, India. It occurs as a small to medium sized tree, 6 to 15 meters in height. Different parts of this plant are reported to possess medicinal properties. Its bark paste is applied on fractured or dislocated bones. It is also used as a fish poison. A decoction of the fruits is used to procure abortion. Bark juice is used in cases of menorrhagia and leucorrhoea.

The leaves of Dolichandrone falcata were collected, shade dried, powdered and subjected to soxhlet extraction successively with distilled water and alcohol. The extract was evaporated to near dryness on a water bath and kept at 4°C in refrigerator until the experimental testing.

Phytochemical screening

The presence of various plant constituents in the plant extract was determined by preliminary phytochemical screening as described by Thimmaiah.

MATERIALS AND METHODS

Collection of plant material

The plant Dolichandrone falcata was collected from Melghat region and identified and authenticated by experts from Botanical Survey of India, Pune (Accession No. MA WD OF). A voucher specimen of the sample was deposited in the herbarium collection at department.

Preparation of extract

The leaves of Dolichandrone falcata were collected, shade dried, powdered and subjected to soxhlet extraction successively with distilled water and alcohol. The extract was evaporated to near dryness on a water bath and kept at 4°C in refrigerator until the experimental testing.

Phytochemical screening

The presence of various plant constituents in the plant extract was determined by preliminary phytochemical screening as described by Thimmaiah.

Procurement and rearing of experimental animal

Albino rats (Wistar strain) used in the present investigation were procured from Sudhakarao Naik Institute of Pharmacy, Pusad (M.S). The rats were acclimatized for 15 days to the best laboratory conditions (prior to experiment), and maintained on balanced diet (Trimurti lab feeds, Nagpur) and water was provided ad libitum.

Acute toxicity study

The animals were divided in four groups of six rats each. The extract was administered orally at the dose of 1000, 2000 and 4000 mg/kg body weight to the first three groups respectively. The fourth group was treated as control and received the vehicle only. The rats of both experimental and control groups were observed for 72 hr. for behavioral changes and mortality.

Abortifacient activity

The plant extract were tested in female albino rats for abortifacient activity by the method described by Khanna and Chaudhary. The vaginal smear of caged female rats of known fertility was monitored daily. Unstained material was observed under a light microscope. The proportion among the cells observed was used for determination of the estrous cycle phase. The female rats were caged with males of proven fertility in the ratio of 2:1 in the evening and examined the following day for the evidence of copulation. Rats exhibiting thick clump of spermatozoa in their vaginal smear were separated and that day was designated as 1st day of pregnancy. These rats were randomly distributed into four groups, a control group and three experimental groups of six animals each. On the 10th day of pregnancy, the animals were laprotomised under light anaesthetic ether using sterile conditions. The two horns of uterus were examined to determine the implantation sites, thereafter the abdominal wound was sutured in layers. Post operational care was taken to avoid any infection.

The alcoholic and aqueous leaf extract of Dolichandrone falcata at a dose of 100 mg/kg, 200 mg/kg and 400 mg/kg body weight was fed to operated pregnant rats daily by an intragastric soft rubber catheter from day 11 up to the 15th day of pregnancy. The animals were allowed to go full term. After delivery the pups were counted and the abortifacient activity of extract was evaluated. Litters were examined for malformations if any.

Effect on estrous cycle

The alcoholic and aqueous extract of Dolichandrone falcata leaves at a dose of 200 mg/kg and 400 mg/kg was found to be active amongst the three treatments in antifertility testing. Hence it was subjected to a detailed investigation for study of estrous cycle. To
study the effect of *Dolichandrone falcata* leaves extract on the estrous cycle, the selected animals were divided into three groups of 6 rats each. Group 1 served as control group, group 2 received alcoholic extract and group 3 received aqueous extract at a dose of 200 mg/kg and 400 mg/kg respectively for 30 days. Vaginal smear using saline solution were taken twice daily during the entire estrous cycle together with that of various phases was determined13, 14.

All experimental protocols were subjected to the scrutinization and approval of institutional Animal Ethics Committee registration number 1060/ac/07/CPCSEA (IAEC/4/2009).

RESULTS

Phytochemical study

Preliminary phytochemical screening of the *Dolichandrone falcata* leaves extract revealed the presence of steroids, tannins, alkaloids, flavonoids, and saponins. (Table 1)

Acute toxicity

Acute toxicity test on the animals did not show any change in general behaviour, skin effects, defecation, loss of hair or other physiological activates. No mortality was observed in the treated and control group of the rats up to a dose of 4000 mg/kg body weight. Hence one-tenth of this dose was used for abortifacient testing.

Abortifacient activity

The alcoholic and aqueous extract of *Dolichandrone falcata* leaves when fed orally from day 11 to 15 of pregnancy, the selected animals were divided into three groups of 6 rats each. Group 1 served as control group, group 2 received alcoholic extract and group 3 re ceived aqueous extract at a dose of 100 mg/kg and 200 mg/kg body wt. of aqueous extract showed 33.33% and 50.98% abortion respectively. The alcoholic extract at a dose of 100 mg/kg body weight showed 86.48% abortion, while 100 mg/kg and 200 mg/kg body wt. of aqueous extract showed 33.33% and 50.98% abortion respectively. The percent resorption index increased from zero in the control group to 100% in the 200 mg/kg body wt and 400 mg/kg body weight of alcoholic and aqueous extract treated animals. (Table 2, 3)

Effect of extract on the estrus cycle of rats

The present study revealed that the alcoholic and aqueous extract of *Dolichandrone falcata* leaves showed an abortifacient effect.

Table 1: Phytochemical profile of *Dolichandrone falcata* leaves extract

<table>
<thead>
<tr>
<th>Name of the plant</th>
<th>Alkaloids</th>
<th>Simple Phenolics</th>
<th>Steroids</th>
<th>Anthraquinone</th>
<th>Flavonoids</th>
<th>Tannins</th>
<th>Saponins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dolichandrone falcata</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

+ Present, - Absent

Table 2: Effect of aqueous extract of *Dolichandrone falcata* (leaves) on fertility of female rats when fed orally from day 11 to 15 of pregnancy

<table>
<thead>
<tr>
<th>Treatment Groups</th>
<th>Body Wt. (gm)</th>
<th>Drug Dose (mg/kg of body wt)</th>
<th>Sample Size</th>
<th>No. of foetus in individual rats on day 10</th>
<th>No. of litter delivered</th>
<th>No. of resorption in individual rats</th>
<th>No. of resorption in Mean + S. E.</th>
<th>% abortifacient activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group - 1 Control (Vehicle)</td>
<td>150 - 200</td>
<td>-</td>
<td>6</td>
<td>7.7, 9, 8, 7.4</td>
<td>6(7.7, 9, 8, 7.4)</td>
<td>0.0, 0.0, 0.0</td>
<td>0</td>
<td>Nil</td>
</tr>
<tr>
<td>Group - 2 Aqueous Extract</td>
<td>150 - 200</td>
<td>100</td>
<td>6</td>
<td>11.8, 8, 8, 7.9</td>
<td>6(8.5, 6, 4, 5)</td>
<td>3.3, 2, 2, 3.4</td>
<td>2.83 + 0.30***</td>
<td>33.33%</td>
</tr>
<tr>
<td>Group - 3 Aqueous Extract</td>
<td>150 - 200</td>
<td>200</td>
<td>6</td>
<td>6.9, 9, 1, 0, 8</td>
<td>6(3.4, 5, 4, 5, 4)</td>
<td>3.5, 5, 4, 5.4</td>
<td>4.33 + 0.33***</td>
<td>50.98%</td>
</tr>
<tr>
<td>Group - 4 Aqueous Extract</td>
<td>150 - 200</td>
<td>400</td>
<td>6</td>
<td>8.2, 6, 6, 8, 4</td>
<td>6(0.0, 0.0, 0.0)</td>
<td>8.2, 6, 6, 8.4</td>
<td>5.66 + 0.95**</td>
<td>100%</td>
</tr>
</tbody>
</table>

Values in Means + S. E. (Standard error), n=6, *P<0.05, **P<0.01, ***P<0.001, When compared between group

Table 3: Effect of alcoholic extract of *Dolichandrone falcata* (leaves) on fertility of female rats when fed orally from day 11 to 15 of pregnancy

<table>
<thead>
<tr>
<th>Treatment Groups</th>
<th>Body Wt. (gm)</th>
<th>Drug Dose (mg/kg of body wt)</th>
<th>Sample Size</th>
<th>No. of foetus in individual rats on day 10</th>
<th>No. of litter delivered</th>
<th>No. of resorption in individual rats</th>
<th>No. of resorption in Mean + S. E.</th>
<th>% abortifacient activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group - 1 Control (Vehicle)</td>
<td>150 - 200</td>
<td>-</td>
<td>6</td>
<td>7.7, 9, 8, 7.4</td>
<td>6(7.7, 9, 8, 7.4)</td>
<td>0.0, 0.0, 0.0</td>
<td>0</td>
<td>Nil</td>
</tr>
<tr>
<td>Group - 2 alcoholic Extract</td>
<td>160 - 200</td>
<td>100</td>
<td>6</td>
<td>5.7, 8, 6, 6, 5</td>
<td>6(1.0, 2, 1, 1)</td>
<td>5.6, 8, 4, 5.4</td>
<td>5.33 + 0.61***</td>
<td>86.48%</td>
</tr>
<tr>
<td>Group - 3 alcoholic Extract</td>
<td>150 - 190</td>
<td>200</td>
<td>6</td>
<td>8.6, 6, 4, 2, 3</td>
<td>6(0.0, 0.0, 0.0)</td>
<td>8.6, 6, 4, 2.3</td>
<td>4.83 + 0.91***</td>
<td>100%</td>
</tr>
<tr>
<td>Group - 4 alcoholic Extract</td>
<td>140 - 190</td>
<td>400</td>
<td>6</td>
<td>9.8, 1, 8, 9, 14.4</td>
<td>6(0.0, 0.0, 0.0)</td>
<td>9.8, 1, 8, 9, 14.4</td>
<td>9.83 + 0.95***</td>
<td>100%</td>
</tr>
</tbody>
</table>

Values in Means + S. E. (Standard error), n=6, *P<0.05, **P<0.01, ***P<0.001, When compared between group.
smear is one in which only large, irregular cornified cells are seen indicating maximum growth of the vaginal mucosa. A metestrus smear will have many cornified cells, but also some leukocytes and epithelial cells, indicating the post ovulatory stage and desquamation of the vaginal mucosa. A diestrus smear will not only show few epithelial cells, mucous cells and few leucocytes, indicating a quiescent uterus and resting vaginal epithelium. A proestrus smear will have many epithelial cells with granular cytoplasm, indicating a rapidly growing vaginal epithelium and also the preovulatory stage. Withdrawal of the treatment did not indicate any significant change either in the four phases of the estrous cycle, or in the duration of the cycle.

Table 4: Effect on estrous cycle of female albino rats after the administration of 200 mg/kg alcoholic extract and 400 mg/kg aqueous extract of Dolichandrone falcata

<table>
<thead>
<tr>
<th>Phases</th>
<th>Proestrous phase (days)</th>
<th>Estrous phase (days)</th>
<th>Metestrous phase (days)</th>
<th>Diestrus phase (days)</th>
<th>Estrous Cycle (Days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaginal opening/</td>
<td>25% to 40%</td>
<td>Above 70%</td>
<td>50% to 70%</td>
<td>50% to 70%</td>
<td></td>
</tr>
<tr>
<td>Cell type obtained in a</td>
<td>Epithelial cells only</td>
<td>Few cornified cells</td>
<td>Cornified cells plus many leukocyte</td>
<td>Leukocytes plus epithelial cells</td>
<td></td>
</tr>
<tr>
<td>vaginal smear</td>
<td></td>
<td></td>
<td>0.81 + 0.14</td>
<td>2.27 + 0.21</td>
<td></td>
</tr>
<tr>
<td>Group I Control</td>
<td>0.59 +0.04</td>
<td>0.65+0.08</td>
<td>0.77 +0.02**</td>
<td>3.49 +0.04***</td>
<td>5.33 +0.21***</td>
</tr>
<tr>
<td>Group II Alcoholic extract</td>
<td>0.47+0.02***</td>
<td>0.60 +0.01*</td>
<td></td>
<td>4.18+0.02***</td>
<td>5.89+0.06***</td>
</tr>
<tr>
<td>200 mg/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group III Aqueous extract</td>
<td>0.45+0.03***</td>
<td>0.56+0.02*</td>
<td>0.70+0.03***</td>
<td>4.18+0.02***</td>
<td>5.89+0.06***</td>
</tr>
<tr>
<td>400 mg/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Values in Mean + S. E. (Standard error), n = 6, *P<0.05, **P<0.01, ***P<0.001, When compared with control.

DISCUSSION

Termination of pregnancy has been practiced since antiquity. Although synthetic abortifacients of known mechanisms are effective and popular, but the risks associated with these drugs have triggered the need to develop new molecules from medicinal plants, which stimulated our interest in Dolichandrone falcata leaves.

Preliminary phytochemical studies of the extract indicated the presence of alkaloids, tannin, flavanoids saponins, steroids and phenolics. The extract of Dolichandrone falcata showed similar constituents like alkaloids and flavanoids which are reported to have contraceptive activity.

Steroidal saponins, one of the active principles of most antifertility agent are also detected in Dolichandrone falcata leaves. The antifertility activities observed in the present study might be attributed to these active principles and it can be presumed that these may individually or synergistically affect the uterus leading to abortion. This finding agrees with that of Tafesse for causing Asparagus africanus extract in rats.

The absence of clinical toxicity symptoms such as tremors, weakness, and refusal of feeds, diarrhea, weight loss, hair loss, coma and death suggests that the Dolichandrone falcata leaves extract was not clinically toxic to the female rats.

The pregnancy interruptive effect of the alcoholic and aqueous extract ranging from 86.48% to 100% for alcoholic extract and from 33.33% to 100% for aqueous extract of Dolichandrone falcata leaves can be interpreted as due to the estrogenic nature of the plant. Regular development of all the events leading to nidation, at least in rats and mice, is chiefly under the direct command of estrogen-progesteron interplay at the cellular level and a slight disturbance in this hormonal balance may result in an unfavorable endometrial environment. Therefore, the increase in the number of dead fetus as well as reduced survival ratio is an indication of the post coital antifertility activity of the Dolichandrone falcata leaves. This finding agrees with that of the antifertility effect of Senna alata leaves extract in rats and methanolic extract of Achyranthes aspera leaves to pregnant rats.

The rat has a characteristic short estrus cycle of 4 to 5 days in phases which make them ideal for reproductive studies. The presence and absence of four cell types and the relative proportion of each cell type, determine the stages of the estrous cycle. An estrous cycle is a rhythmic reproductive cycle in sexually mature female mammals and is influenced by the release of gonadotropin releasing hormone from the hypothalamus, gonadotropins from the pituitary gland and six hormones from the gonads. While female cyclicity characterized by vaginal changes as observed in estrous cycle is an index of good functioning of the neuroendocrine reproductive system and ovarian activity, loss of normal estrus cycle indicates the disruption of ovarian progesterone and estrogen balance. An irregular pattern of estrus with a prolonged diestrus and consequently a reduced number of ova in the ovary was attributed to administration of Garzenia Kola seed extract. The present observation of irregular estrus cycle which correlates well with antifertility effect of Dolichandrone Falcata is consistent with the finding on neem flower extract.

In conclusion, the present study suggests that the alcoholic and aqueous extract of Dolichandrone falcata leaves show antifertility activity causing cessation of estrus cycle at the diestrus phase in albino rats.

REFERENCES

