PREPARATION AND CHARACTERIZATION OF SOLID DISPERSION OF MODAFINIL FOR IMPROVEMENT OF DISSOLUTION PROFILE

VYAS JIGAR*, PATEL JAYVADAN, JAIN D. A.

1Department of Pharmaceutics, Bhagwant University, Ajmer, India, 2Nootan Pharmacy College, Visnagar, Gujarat, India.

Email: drjrvyas@yahoo.co.in

Received: 06 Aug 2012, Revised and Accepted: 20 Sep 2012

ABSTRACT

Solid dispersions of Modafinil were prepared using polyethyleneglycols, in various proportions by melting, solvent evaporation and simple mixing method. Based on the solubility and melting point study, PEG8000 was selected and solid dispersion batch F9 containing drug:PEG8000 in 1:4 was formulated as tablet (batch TP9) and evaluated for in-vitro drug dissolution and six month stability. The results were compared with that of tablet containing physical mixture of drug:PEG8000 in the same ratio (batch TF27) and conventional tablet containing plain Modafinil (batch CT). Tablet TP9 has shown statistically improvement in dissolution profile of Modafinil when compared with that of tablet TF27 and CT. Present study conclusively demonstrated that PEG8000 enhanced water solubility of Modafinil by amorphisation, which was confirmed by XRPD and FTIR. The melting method was found better than solvent evaporation method for enhancement of dissolution profile.

Keywords: Modafinil, Solubility enhancement, solid dispersion, Polyethyleneglycols.

INTRODUCTION

Many potential drug candidates are characterized by a low oral bioavailability. Often, poor drug dissolution/solubility rather than limited permeation through the epithelia of the gastrointestinal tract are responsible for low oral bioavailability. The relationship between dissolution rate and absorption is particularly distinct when considering drugs of low solubility. Consequently, numerous attempts have been made to modify the dissolution characteristics of certain drugs in an effort to attain more rapid and more complete absorption. Among the techniques to increase aqueous solubility/dissolution rate, solid dispersion is one of the most popular techniques1, although few marketed products rely on this concept. The interest in amorphous drug–polymer solid dispersions has grown due to the potential of improving bioavailability, particularly for poorly water-soluble drugs2–5. The basis for this interest stems from the increased rate of dissolution, which can range from hundreds to thousands fold increase, even for those insoluble active pharmaceutical ingredients2. For drugs whose bioavailability is limited due to poor aqueous solubility (as in BSC class II drugs), the improvement in solubility and hence increase in dissolution rate may lead to enhanced bioavailability6–11. Solid dispersion represents a useful pharmaceutical technique for increasing the dissolution, absorption, and therapeutic efficacy of drugs in dosage forms12–14.

Modafinil is approved by the USFDA for the treatment of narcolepsy, hypersomnia, shift work sleep disorder and excessive daytime sleepiness associated with obstructive sleep apnoea and in adult it is used in attention deficient /hyperactivity disorder (ADHD).15 It is rapidly absorbed after oral administration with peak plasma concentrations occurring after 2-4 hours. However the oral bioavailability of the drug is poor due to water insolubility16. Modafinil is BCS class II drug hence improvement of dissolution will lead to enhancement of bioavailability.

In the present study, to improve water solubility, we prepared solid dispersions of Modafinil using hydrophilic carriers (polyethyleneglycols) by two different methods i.e. melting method and solvent evaporation method. For purposes of comparison, physical mixtures were prepared by simple mixing and homogenization after pulverization of drug and carriers.

MATERIALS AND METHODS

Modafinil was obtained as a gift sample from Alembic Pharmaceuticals Ltd. (India), PEG4000, PEG6000, PEG8000, carboprol 974, crossozpine, polynvinypyrrolidone (PVP) k30, starch, microcrystalline cellulose (MCC), magnesium (Mg.) stearate, acetone and chloroform were purchased from S. D. Fine Chemicals Ltd. (India), and hydrochloric acid was purchased from Loba Chem (India). All other chemicals and reagents used were of AR grade and used without further purifications.

Methods

Preparation of solid dispersions and physical mixtures

Solid dispersions were prepared by two methods i.e. melting method and solvent evaporation method.

Melting method - Solid dispersions containing different mass ratios (1:1, 1:2, 1:4) of drug in PEG4000, PEG6000, and PEG8000 were prepared by melting the carriers in porcelain dish (at around 10 °C above the melting point of carriers) on sand bath, dispersing the drug onto the molten carrier and cooling immediately on freezing mixture of ice and sodium chloride. The solid dispersions were then allowed to cool at an ambient temperature and stored in desiccators for 24 hours. The dry mass was scrapped, crushed and ground in a mortar and passed through sieve #40 (420 µm). The dried mass was stored in desiccator until further use.

Solvent evaporation method - Solid dispersions of same compositions as discussed in previous method were prepared by dissolving required amount of drug and carriers in a solvent mixture of acetone and chloroform (1:1). The solvent was evaporated at 40 °C on a water bath with continuous stirring and the resulting residues were dried under vacuum for 3 hours and stored in desiccators overnight. The dry mass was ground in a mortar, passed through sieve #40 (420 µm) and stored in desiccator until further use.

Physical mixtures were prepared by kneading the desired amount of drug and carriers for 10 minutes and then grounding in mortar with pestle. The co-grinding mixtures were then passed through sieve #40 (420 µm) and stored in desiccator until further use.

Characterisation of solid dispersions

Saturation solubility of Modafinil was determined in mg/ml using UV-visible spectrophotometer (Shimadzu, Japan) measuring maximum absorption (λmax) at 222 nm after filtration and necessary dilutions.

Melting point was determined using precision melting point apparatus (Remi, India).

Stability study of solid dispersions was conducted in stability chamber (Remi, India) at 45 + 2 ºC with 75 + 5 % RH for 6 months
and stability was evaluated and compared by determining saturation solubility and melting point.

FTIR spectra of moisture free powdered samples were obtained using a FTIR spectrophotometer (Shimadzu, Japan) in potassium bromide. The scanning range was kept between 400 and 4000 cm\(^{-1}\) and the resolution was kept constant at 1 cm\(^{-1}\).

X-ray powder diffraction (XRPD) patterns were recorded on Phillips PW 1130/00 diffractometer (Philips, Holand), employing CuK\(_{α}\) radiation source operating at 30 mA and 40 kV. Samples were scanned from 6 to 40° 2θ at a scanning rate of 0.02° 2θ.

Preparation and evaluation of tablets containing Modafinil

Tablets containing solid dispersions, drug-carrier physical mixture or pure drug, equivalent to 200 mg of Modafinil, were prepared by direct compression method after mixing with required amount of different ingredients as shown in Table 4.

All the prepared tablets were subjected to routine quality control tests like hardness & content uniformity and then tested for in-vitro dissolution and six months stability.

In-vitro dissolution study of Modafinil was performed on 8 vessel USP type II dissolution test apparatus\(^{16}\) in 0.1 molL\(^{-1}\) hydrochloric acid with constant temperature of 37 ± 2 °C and speed at 50 rpm. Aliquots were withdrawn at predetermined time intervals, measured at 222 nm and cumulative percentage release of drug was recorded. Stability study of tablets was conducted in stability chamber (Remi, India) at 45 ± 2 °C with 75 ± 5 % RH for 6 months and stability was evaluated and compared by determining saturation solubility and melting point.

RESULTS AND DISCUSSION

Solid dispersions of Modafinil were prepared successfully by melting and solvent evaporation method and compared with physical mixtures of drug and carriers. All the prepared formulations were evaluated for saturation solubility and melting point (Table 1, Table 2 and Table 3).

<table>
<thead>
<tr>
<th>Batch</th>
<th>Modafinil (mg)</th>
<th>PEG4000 (mg)</th>
<th>PEG6000 (mg)</th>
<th>PEG8000 (mg)</th>
<th>SS (mg mL(^{-1}))</th>
<th>M(_θ) (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>100</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>1.14</td>
<td>115</td>
</tr>
<tr>
<td>F2</td>
<td>100</td>
<td>200</td>
<td>-</td>
<td>-</td>
<td>1.27</td>
<td>113</td>
</tr>
<tr>
<td>F3</td>
<td>100</td>
<td>400</td>
<td>-</td>
<td>-</td>
<td>1.59</td>
<td>110</td>
</tr>
<tr>
<td>F4</td>
<td>100</td>
<td>-</td>
<td>100</td>
<td>-</td>
<td>1.53</td>
<td>119</td>
</tr>
<tr>
<td>F5</td>
<td>100</td>
<td>-</td>
<td>200</td>
<td>-</td>
<td>1.71</td>
<td>117</td>
</tr>
<tr>
<td>F6</td>
<td>100</td>
<td>-</td>
<td>400</td>
<td>-</td>
<td>2.12</td>
<td>114</td>
</tr>
<tr>
<td>F7</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>1.87</td>
<td>124</td>
</tr>
<tr>
<td>F8</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>200</td>
<td>2.06</td>
<td>122</td>
</tr>
<tr>
<td>F9</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>400</td>
<td>2.58</td>
<td>119</td>
</tr>
</tbody>
</table>

F9 was selected for further study because the saturation solubility of Modafinil was greater in F9 (2.58 mg mL\(^{-1}\)) as compared to F18 (2.32 mg mL\(^{-1}\)).

Batch F9 was characterized by FTIR (Fig. 1) and XRPD (Fig. 2) to understand possible mechanism of solubility enhancement. Physical mixture batch F27 was also characterized and compared with batch F9 to understand the mechanism of solubility enhancement of Modafinil.

FTIR spectra (Fig. 1) showing characteristic peaks of Modafinil at 3307 and 3167 cm\(^{-1}\) for Aliphatic - NH stretching hydrogen bond; 3069 and 3027 cm\(^{-1}\) for aromatic –CH stretching; 2976 and 2926 cm\(^{-1}\)
for aliphatic –CH stretching; 1685 cm⁻¹ for -C=O of amide and 1080 cm⁻¹ for -S=O groups. PEG8000 showed characteristic peaks at 3436 cm⁻¹ for -OH stretching and at 2890 cm⁻¹ for -CH stretching of CH₂ groups. In spectra of batch F9, peaks at 3307 and 3167 cm⁻¹ are absent, or rather split into 3337 and 2888 cm⁻¹ due to breaking of hydrogen bond between -NH and -CH stretching to form the bond between -NH group of Modafinil with -OH group of PEG8000. Also the intensity of peak at 1686 cm⁻¹ was decreased and a peak at 1080 cm⁻¹ in pure drug was shifted to 1060 cm⁻¹ in solid dispersion indicating absence of free drug in solid dispersion.

It was observed in XRPD diffractogram (Fig. 2) that Modafinil is crystalline in nature showing at least three intense peaks along with several small to intermediate peaks in diffractogram and PEG8000 is semi-crystalline showing two intense peaks in diffractogram. Solid dispersions showed no intense peaks but only few peaks of lesser intensity when compared to pure drug and carrier. This study confirmed that Modafinil was converted in amorphous state in solid dispersion F9 which led to solubility enhancement. In diffractogram of physical mixture (batch F27), reduction of number of peaks as well as intensity of peaks was observed confirming only partial conversion of crystalline to amorphous form.

All the three tablet batches were characterised for in-vitro drug dissolution and six months stability (Table 5). The solid dispersion F9 and physical mixture F27 were also studied for six months stability by taking melting point and saturation solubility as evaluation parameters (Table 5).

It was observed that, melting point of solid dispersion (batch F9) was increased by 9.2 % as compared to 1.2 % and 0.6 % in physical mixture (batch F27) and conventional tablet (batch CT) respectively, suggested stability problem in solid dispersion. Saturation solubility was decreased by 27.9 % in batch F9 as compared to 3.2 % and 3.0 % in batch F27 and batch CT respectively. Similarly cumulative percent drug release was decreased by 27.8 % in batch F9 as compared to 11.7 % and 6.0 % in batch F27 and batch CT respectively. This data strongly suggested poor stability of solid dispersion or the amorphous form. Hence stabilization of solid dispersion was needed to make this formulation strategy successful.
Batch F9 was formulated as tablet and extensively evaluated for in-vitro dissolution and stability study. Tablet containing batch F27 was prepared to understand the effect of simple mixing and tablet containing pure drug was prepared to understand magnitude of improvement in dissolution rate.

Table 4: Composition of tablet containing pure drug, solid dispersion and physical mixture

<table>
<thead>
<tr>
<th>Tablet ingredients</th>
<th>Batch TF9</th>
<th>Batch TF27</th>
<th>Batch CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modafinil (100 MG) + PEG (400 mg)</td>
<td>500</td>
<td>500</td>
<td>100</td>
</tr>
<tr>
<td>Carbopol974 (mg)</td>
<td>120</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>Crosspovidone (mg)</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>PVP K30 (mg)</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Starch (mg)</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>MCC (mg)</td>
<td>20</td>
<td>20</td>
<td>420</td>
</tr>
<tr>
<td>Mg. Stearate (mg)</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Total (mg)</td>
<td>800</td>
<td>800</td>
<td>800</td>
</tr>
<tr>
<td>Content uniformity* (% + SD)</td>
<td>98.55 + 1.24</td>
<td>99.61 + 2.85</td>
<td>97.95 + 0.42</td>
</tr>
</tbody>
</table>

*n=6; Batch TF9, TF27 and CT are coded for tablet of batch F9, batch F27 and conventional tablet respectively.

Table 5: Stability data for six months

<table>
<thead>
<tr>
<th>Batches</th>
<th>Melting point (°C)</th>
<th>Saturation solubility (mg mL⁻¹)</th>
<th>Cumulative percentage drug release after 1 hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 m</td>
<td>6 m</td>
<td>0 m</td>
</tr>
<tr>
<td>F9/TF9</td>
<td>119</td>
<td>131</td>
<td>2.58</td>
</tr>
<tr>
<td>F27/TF27</td>
<td>162</td>
<td>164</td>
<td>0.62</td>
</tr>
<tr>
<td>drug/CT</td>
<td>166</td>
<td>165</td>
<td>0.067</td>
</tr>
</tbody>
</table>

*n=3, values shown above are average of three determinations with % SD less than 4.5 %.

*a: melting point and saturation solubility data is that of batch F9, F27 and pure drug;

*b: cumulative percentage drug release after 1 hour data is of batch TF9, TF27 and CT.
CONCLUSIONS

Solid dispersions of Modafinil prepared with different polyethyleneglycols (PEG4000, PEG6000 and PEG8000) by melting and solvent evaporation method resulted in increased saturation solubility of Modafinil. As demonstrated by characterization of solid dispersion by FTIR and XRPD study, a decreased crystallinity of Modafinil as well as modification in surface morphology of Modafinil due to coating of hydrophilic carrier (PEG) can explain the enhanced solubility and improved dissolution rate. This study conclusively demonstrated that solid dispersion can be utilized successfully to improve dissolution profile of poorly water soluble drug after stabilizing the solid dispersions with suitable method.

ACKNOWLEDGEMENT

The authors acknowledge Alembic Pharmaceuticals Ltd. for providing Modafinil as a gift sample.

REFERENCE