ANTI INFLAMMATORY ACTIVITY OF A NOVEL HERBAL COMBINATION

ABDULLAH KHAN1, SMD NOORULLA2, MOHAMMED MUQTADER1, ROSHAN S1, SADATH ALI3

1Department of Pharmacy, Singhania University, Pacheri Bari, Rajasthan, 2Department of Pharmacy, CMJ University, Shillong, Meghalaya, 3Himalayan Institute of Pharmacy & Research, Dehradun, Uttarakhand. Email: abdullah2020@rediffmail.com

Received: 25 July 2011, Revised and Accepted: 05 April 2012

ABSTRACT

A traditional herbal formulation containing Colchicum luteum, Butea frondosa, Withania somnifera, Pyrethrum indicum, Myrtus caryophyllus Zinziber officinallis and Allium cape officinallis was evaluated for anti-inflammatory activity in Rat paw edema models in albino rats. The activity was compared with that of the control and Indomethacin (25mg/kg body weight). The results indicate that the formulation, given orally, in the dosage of 100 mg/kg body weight and 200mg/kg body weight possess potent anti-inflammatory activity (P<0.01)

Keywords: Anti-inflammatory activity, Herbal formulation, Indomethacin, Carrageenan.

INTRODUCTION

Inflammation is a normal, protective response to tissue injury caused by physical trauma, noxious chemicals or microbiological agents. Inflammation is the body’s effort to inactivate or destroy invading organisms, remove irritants and set the stage for tissue repair [1]. The cell damage associated with inflammation acts on cell membranes to cause leukocytes to release lysosomal enzymes; arachidonic acid is then liberated from precursor compounds and various eicosanoids are synthesized. The cyclo-oxygenase pathway of arachidonic metabolism produces prostaglandins, which produce a variety of effects on blood vessels, on nerve endings and on cells involved in inflammation [2]. Anti-inflammatory drugs have been evaluated by studying inflammatory responses produced in animals by injecting the foreign or noxious agents. The principle underlying the testing of anti-inflammatory activity is the reduction of the local oedema induced by injecting irritants, inflammatory substance.

The inflammatory process involves a series of events that can be elicited by numerous stimuli (e.g. infectious agents, ischaemia, antigen-antibody interactions and thermal or other physical injury.) Each type of stimulus provokes a characteristic pattern of response that represents a relatively minor variation on a theme.

The complete process of inflammation contains of three phases,

i) Dilatation and increased permeability of small blood vessels resulting in the formation oedema and swelling.

ii) Emigration of leukocytes from venules and capillaries, cellular infiltration and a general mopping up reaction.

iii) Proliferation of fibroblasts and synthesis of new connective tissue to repair the injury.

A number of mediators have been identified which initiate the early development (first phase) of certain experimentally induced inflammatory processes [3-6].

In the present study a traditional herbal formulation containing Colchicum luteum, Butea frondosa, Withania somnifera, Pyrethrum indicum, Myrtus caryophyllus Zinziber officinallis and Allium cape officinallis and Allium cape officinallis was claimed to have the potential to treat wounds, burns, fistula, acute toxicity study.

RESULTS AND DISCUSSION

The formulation was obtained as gift sample from a Ayurvedic Practitioner Dr. Syed Zahed, Dabeerpura, Hyderabad, Andhra Pradesh and used as such.

The inflammatory process involves a series of events that can be elicited by numerous stimuli (e.g. infectious agents, ischaemia, antigen-antibody interactions and thermal or other physical injury.) Each type of stimulus provokes a characteristic pattern of response that represents a relatively minor variation on a theme.

MATERIALS AND METHOD

The animals were fasted overnight prior to the experimental procedure. The up and down or ‘Staircase’ method [6] was adopted and accordingly two doses of 100mg/Kg body weight and 200mg/Kg body weight were selected for the assessment of Anti-inflammatory activity.

Evaluation of anti-inflammatory activity

The rats were divided into different groups of six animals each. The formulation was introduced into the stomach of the respective animal and their weight and 200mg/kg body weight possesses potent anti-inflammatory activity (P<0.01) of anti-inflammatory activity in carrageenan induced rat paw edema in Albino rats.

Table 1: Anti-inflammatory activity of herbal formulation on carrageenan induced rat hind paw edema.

<table>
<thead>
<tr>
<th>Group</th>
<th>No. of Animals</th>
<th>Dose mg/kg</th>
<th>Paw edema percent protection (Hr.) ± S.E.M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>½ Hr</td>
</tr>
<tr>
<td>Control</td>
<td>06</td>
<td>1 ml(1% Tween 80)</td>
<td>0.18±0.14</td>
</tr>
<tr>
<td>Standard (Indomethacin)</td>
<td>06</td>
<td>25</td>
<td>36.12±0.02</td>
</tr>
<tr>
<td>Formulation</td>
<td>06</td>
<td>100</td>
<td>29.11±0.34</td>
</tr>
<tr>
<td>Formulation</td>
<td>06</td>
<td>200</td>
<td>38.32±0.01</td>
</tr>
</tbody>
</table>
Formulation at a dose of 200 mg/kg body weight (76.21%, at 2 hrs) exhibited promising anti-inflammatory effect at 2 hr. Similarly, formulation at a dose of 100 mg/kg body weight (62.50% at 2 hrs) exhibited moderate anti-inflammatory effect compared to standard indomethacin (72.31%).

The anti-inflammatory effect of formulation is due to inhibition of either vascular event or cellular events or due to both in experimental rats. The effect of this formulation may be due to inhibiting either of the any chemical mediators or due to any one of enzymes involved in the process of inflammation in the experimental rats. The moderate formulation may be due to the inhibition of any of chemical mediators involved in the process of inflammation.

CONCLUSION

In conclusion, simple and convenient methods of the formulation for anti-inflammatory were demonstrated. Formulation at a dose of 200 mg/kg body weight was found to be most potent anti-inflammatory formulation. The study suggests that the formulation under study has potential anti-inflammatory effect and can be explored for further phytochemical studies.

ACKNOWLEDGEMENT

The Authors are grateful to Dr. M.G. Purohit, Professor Emeritus, Luqman College of Pharmacy, Gulbarga, for his guidance and encouragement in carrying out this work.

REFERENCES