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ABSTRACT  

Phytochemical investigation from branches of Hortia longifolia (Rutaceae) yielded the amide N-[2-(4-prenyloxyphenyl)ethyl]tigliamide (1), (E)-
methyl-O-prenyl ferulate (2), limonin (3), cinnamic acid derivatives [(E)-methyl-5’-hydroxy-O-prenyl cinnamate 4 and integrifoliodiol 7], scopoletin 
(5) and skimmianine (6). The compound 4 showed moderate α-amylase inhibitory activity, the coumarin 5 presented strong activity on α-
glucosidase (IC50 of 0.89 µg/mL). The compounds 1, 2, 4 and 5 exhibited significant inhibitory activity on lipase with IC50 at 6.91, 8.14, 3.86 and 5.07 
µg/mL, respectively. The results demonstrate potential use for these compounds in development of drugs of natural origin in the prevention or 
treatment of metabolic syndrome. 
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INTRODUCTION 

Hortia longifolia Benth. Ex Engl (Rutaceae) occurs in Brazil [1], and 
previous study reported the isolation of alkaloids, coumarins and 
flavonoid from bark [2]. In this paper we describe the isolation and 
structural identification of seven compounds from branches and 
evaluate their α-glucosidase, α-amylase and lipase inhibition 
properties. The importance of the inhibitors of these enzymes have 
attracted interest because the inhibition of the catalytic activity of α-
glucosidase leads to retardation of the absorption of glucose and the 
reduction of postprandial blood glucose level [3,4], therefore they 
play a significant role in the therapy of diabetes and obesity. 
Similarly, inhibitors of α-amylases may be used in treating obesity, 
reducing postprandial levels of insulin and increasing the sensation 
of satiety due to the retardation of gastric emptying [5,6]. Lipases 
are fat-digesting enzymes, the lipid metabolism is balanced to 
maintain homeostasis, and when this balance is lost, obesity or 
hyperlipidemia develops, leading to a variety of serious diseases, 
including atherosclerosis and diabetes [7,8]. Considering the low 
availability of inhibitors of enzymes in the pharmaceutical industry, 
the search for models of secondary metabolites from natural sources 
is promising.  

MATERIAL AND METHODS 

General experimental procedures 

Column chromatography (CC) was performed with silica gel 60 (70-
230 and 230-400 mesh, Merck). Analytical thin layer 
chromatography (TLC) was carried out on plates precoated with 
silica gel 60 F254 (0.20 mm; Merck). NMR spectra were measured in a 
Bruker DRX 400 apparatus; chemical shifts (d) were expressed in 
ppm, and coupling constants (J) in Hertz; TMS was used as internal 
standard.  

Plant material  

Hortia longifolia was collected in the Forest Reserve Adolfo Ducke, 
Amazonas, Brazil, and identified by J.R. Pirani (Universidade de São 
Paulo). A voucher no. 209963 is deposited in the Herbarium of the 
Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, AM. 

Extraction, fractionation and isolation  

Powdered air-dried branches (735 g) were macerated at room 
temperature with n-hexane and then MeOH. The n-hexane extract (2.1 
g) was fractionated over silica gel column (3.5 x 18.5 cm; 70-230 
mesh), eluted with hexane, hexane:EtOAc and acetone, to yield twelve 
fractions. The fractions 8-9 (559.5 mg) after column chromatography 
over silica gel (2 x 22.5 cm; 230-400 mesh), eluted with hexane:EtOAc 

(2-100%), yielded compound 1 (91.6 mg) [Rf 0.52 (hexane:acetone, 
7:3)]. The MeOH extract (12.2 g) was suspended in H2O and 
partitioned successively with hexane, CH2Cl2 and EtOAc. The hexane 

phase yielded a mixture of β-sitosterol and stigamasterol and the 
CH2Cl2 phase (F-2; 4.1 g) was fractionated over silica gel (2.8 x 60 cm; 
70-230 mesh), eluted with CH2Cl2, CH2Cl2:EtOAc (10-100%), 
EtOAc:MeOH (10-50%) and MeOH, yielding twenty nine fractions. The 
combined fractions 7-9 (F-2.7), 12-13 (F-2.12) and 14-18 (F-2.14) 
were submitted to further chromatographic fractionations. Frs. F-2.7 
(72 mg) was subjected to column chromatography over silica gel (1.7 x 
50 cm; 230-400 mesh), eluted with hexane:EtOAc (5-100%), to give 2 
(4 mg) [Rf 0.55 (hexane:EtOAc, 7:3)]. F-2.12 (348 mg) was purified 
with a acetone to give 3 (13 mg) [Rf 0.50 (CH2Cl2:EtOAc, 85:15)]and the 
mother liquor was fractionated over silica gel column (1.7 x 50 cm; 
230-400 Mesh), eluted with CH2Cl2, CH2Cl2:EtOAc (10-100%), 
EtOAc:MeOH (10-50%), to give sixty seven fractions; and the frs. 39-43 
(F-2.39), 44-48 (F-2.44) and 49-52 (F-2.49) were submitted to further 
chromatographic fractionations. F-2.39 (69 mg) was chromatographed 
on silica gel (1 x 31 cm; 230-400 mesh), eluted with hexane:EtOAc (5-
50%), to give 4 (27 mg) [Rf 0.59 (CH2Cl2:EtOAc, 85:15)] and 5 (6 mg) 
[Rf 0.67 (CH2Cl2:EtOAc, 9:1)]. The clearing of F-2.44 (25 mg) with 
MeOH and F-2.49 (29 mg) with EtOAc yielded compounds 6 (3 mg) [Rf 

0.43 (CH2Cl2:EtOAc, 93:7)] and 3 (13 mg), respectively. F-2.14 (933 
mg) was fractionated over silica gel column (1.5 x 26 cm; 230-400 
mesh), eluted with CH2Cl2, CH2Cl2: EtOAc (2-100%) to give 7 (4 mg) [Rf 

0.50 (CH2Cl2:EtOAc, 7:3)].  

Compound 1 

1H NMR (CDCl3, 400 MHz): δ 7.11 (2H, dd, J = 6.5, 2.1 Hz, H-2, H-6), 
6.87 (2H, dd, J = 6.5, 2.1 Hz, H-3, H-5), 6.37 (1H, dd, J = 13.8, 6.9 Hz, 
H-5’’), 5.49 (1H, m, H-2’), 5.40 (s, N-H), 4.50 (2H, d, J = 6.8, H-1’), 3.53 
(2H, dd, J = 12.8, 6.9 Hz, H-2’’), 2.78 (2H, t, J = 6.9 Hz, H-1’’), 1.79 (3H, 
m, H-5’), 1.78 (3H, m, H-6’’), 1.73 (3H, m, H-4’), 1.73 (3H, m, H-4’, H-
7’’). 13C NMR (CDCl3,100 MHz): literature [9]. HSQC and HMBC 
(CDCl3, 400/100 MHz,): Text.  

Compound 2 

1H NMR (CDCl3, 400 MHz): 7.62 (1H d, J = 16.0, H-1’’), 7.07 (1H, ddd, 
J= 8.4, 2.4, 0.4 Hz, H-6), 7.04 (1H, d, J =2.8 Hz, H-2), 6.87 (1H, d, J = 8 
Hz, H-5), 6.32 (1H, d, J = 16.0, H-2’’), 5.68 (sl, N-H), 5.51 (1H, m, H-2’), 
4.63 (1H, d, J = 8 Hz, H-1’), 3.89 (3H, s, OMe), 3.79 (3H, s, H-4’’), 1.78 
(3H, dl, H-5’), 1.77 (3H, sl, H-4’).13C NMR (CDCl3, 100 MHz): 167.7 (C-
3’’), 150.7 (C-4), 149.8(C-3), 144.9 (C-1’’), 138.1 (C-3’), 127.5 (C-1), 
122.5 (C-6), 119.6 (C-2’), 115.5 (C-2’’), 112.9 (C-5), 110.3 (C-2), 65.9 
(C-1’), 56.0 (OMe), 51.5 (C-4’’), 25.8 (C-5’), 18.3 (C-4’), HSQC and 
HMBC (CDCl3, 400 MHz): Text.  
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Compound 3 

1H NMR (CDCl3, 400 MHz) δ 7.41 (1H, m, H-21), 7.40 (1H, m, H-23), 
6.34 (1H, m, H-22), 5.47 (1H, s, H-17), 4.78 (1H, d, J = 13.0 Hz, H-
19a), 4.48 (1H, d, J = 13.0 Hz, H-19b), 4.04 (1H, s, H-3), 4.04 (1H, s, H-
15), 3.00 (1H, dd, J = 16.8, 4.0 Hz, H-2a), 2.86 (1H, dd, J = 15.6, 0.8 Hz, 
H-6a), 2.70 (1H, dd, J = 16.8, 2.0 Hz, H-2b), 2.49 (1H, dd, J = 14.4, 3.2 
Hz, H-6b), 2.55 (1H, dd, H-9), 2.23 (1H, dd, H-5), 1.80 (1H, m, H-12a), 
1.91 (1H, m, H-11a), 1.77 (1H, m, H-11b), 1.52 (1H, m, H-12b), 1.29 
(3H, s, H-28), 1.18 (3H, s, H-29), 1.17 (3H, s, H-18), 1.07 (3H, s, H-
30). 13C NMR (CDCl3,100 MHz,): literature [10].  

Compound 4 

1H NMR (CDCl3, 400 MHz): 7.66 (1H, d, J = 16.0 Hz, C-1’’), 7.48 (2H, d, 
J = 8.8 Hz, C-2, C-6), 6.92 (2H, d, J = 8.8 Hz, C-3, C-5), 6.30 (1H, d, J = 
16.0 Hz, C-2’’), 5.77 (1H, m, C-2’), 4.63 (1H, dd, J = 6.8, 0.8 Hz, C-1’), 
4.09 (2H , d, J = 4.8 Hz, C-5’), 3.79 (3H, s, H-4’’), 1.77 (3H, s, C-4’). 
NMR 13C (100 MHz, CDCl3): literature [12].  

Compound 5 

1H NMR (CD3OD, 400 MHz): δ 7.84 (1H, d, J = 9.6 Hz, H-4), 7.04 (1H, 
s, H-5), 6.70 (1H, s, H-8), 6.13 (1H, d, J = 9.2 Hz, H-3), 3.88 (OMe). 13C 
NMR (CD3OD, 100 MHz): 165.0 (C-2), 157.0 (C-4a), 148.3 (C-7), 
146.4 (C-4), 131.0 (C-6), 111.0 (C-8b), 110.8 (C-3), 109.4 (C-5), 104.3 
(C-7), 56.7 (OMe). 

Compound 6 

1H NMR (CD3OD, 400 MHz): 8.03 (1H, d, J = 9.2 Hz, H-5), 7.59 (1H, d, J 
= 2.8 Hz, H-2’), 7.25 (1H, d, J = 9.2 Hz, H-6), 7.05 (1H, d, J = 2.8 Hz, H-
1’), 4.43 (s, OMe-4), 4.11 (s, OMe-8), 4.03 (s, OMe-7). 13C NMR 
(CD3OD, 100 MHz): literature [13].  

Compound 7  

NMR 1H (400 MHz, MeOD): 7.31 (d, J = 8.4 Hz, C-2 and C-6), 6.87 (d, J 
= 8.4 Hz, C-3 and C-5), 6.57 (d, J = 16.0 Hz, C-1’’), 6.24 (dt, J = 15.6 
and 6.0 Hz, C-2’’), 5.77 (m, C-2’), 4.60 (dd, J = 6.4 and 0.8 Hz, C-1’), 
4.29 (dd, J = 6.0 and 1.6 Hz, C-3’’), 4.09 (t, J = 0.4 Hz, C-5’), 1.78 (sl, C-
4’). NMR 13C (100 MHz, MeOD): literature [14]. 

Enzymatic assays in vitro 

The -amylase and lipase inhibitory assays were performed as 
previously described, with some modifications [15,16]. The -
glucosidase inhibitory activity was determined according to 
Andrade-Cetto et al (2008) [17].  

α-Amylase inhibitory activity  

In this colorimetric test, 20 L of α-amylase enzyme from human 
saliva (A1031, Sigma) at 0.5 mg/mL was incubated with 20 L of the 
compounds 1-3 and 5 (500 μg/mL), compound 4 (7.8-500 μg/mL), 
or with control drug Acarbose (A8980, Sigma), for 5 minutes at 37 
°C. After adding 50 L of the Amylase Substrate (starch at 0.5 
mg/mL, Labtest), the plate was incubated for approximately 8 
minutes. Then 100 L of the reactive α-amylase (iodide potassium at 
0.5 mg/mL, Labtest), and 150 L of distilled water were added. The 
microplate was incubated for another 5 minutes at 37 °C, and the 
absorbances were measured at 630 nm. 

-Glucosidase inhibitory activity 

This was determined by incubation of 20 L of the compounds 
(6.25-100 μg/mL), solvent or Acarbose (A8980, Sigma) with 180 L 
of the α-glucosidase enzyme from Saccharomyces cerevisiae (G0660, 
Sigma) for 2 minutes, at 37 °C. Then, after the addition of 150 L of 
the color reagent PNPG (p-nitrophenyl--D-glucopyranoside, 
Sigma), it was incubated for 15 minutes, at 37 °C. The assay media 
contained 10 mM potassium phosphate buffer (pH 6.9), 5 mM PNPG 
and alpha-glucosidase (0.5 mg/mL). The reading of the microplate 
was performed at 405 nm.  

Pancreatic lipase inhibitory activity  

The activity was determined by incubation of 20 L of the 
compounds (1.56-50 μg/mL), diluent or control drug Orlistat® 

(O4139, Sigma) with 180 L of the enzyme. The porcine pancreas 
lipase, type II (L3126, Sigma) was incubated for 2 minutes at 37 °C. 
After the addition of 200 L of Tris, the absorbances values were 
measured at 405 nm and the second reading were made 15 minutes 
after addition of 20 L of the PNP (Sigma). The assay media 
contained 75 mM Tris buffer (pH 8.5), 2.5 mM PNP and 250 mU of 
pancreatic lipase.  

Each test was performed three times and the IC50 values were 
determined by nonlinear regression using the program Microcal™ 
Origin ® version 6.0 (Microcal Software Inc).  

RESULTS AND DISCUSSION  

Isolated compounds  

The compounds 1-5 and 7 are reported for the first time from this 
species. The 1H and 13C NMR spectra of compound 1 are consistent 
with N-[2-(4-prenyloxyphenyl) ethyl]tigliamide [9]. The HSQC 
experiment showed the correlations of hydrogen at δ 7.11 and 6.87 
with carbon at δ 129.7 (C-2/6) and 114.8 (C-3/5), respectively. The 
HMBC experiment showed the correlations between the methylene 
hydrogens at δ 4.50 and the 13C signals at δ 157.5 (C-4), 119.7 (C-2’) 
and 138.1 (C-3’), the olefinic hydrogen at δ 6.37 with carbonyl at δ 
169.3, methyl carbon at δ 12.3 and 13.9 of the tigliamide group.  

The 1H and 13C NMR spectra of 2, 4 and 7 showed typical signals of 
prenylated ferulate or cinnamate. The 1H NMR spectrum of 2 
exhibited signals typical of trisubstituted aromatic ring, prenyl 
group and α,β-unsaturated ester. In the HSQC, the methylene signal 
at δ 4.63 (H-1’), correlates with the 13C signals at δ 65.9. The olefinic 
signal at δ 7.62 (H-1”), showed a long-range correlations with the 13C 
signals at δ 167.8 (C-3"), 110.3 (C-2), 122.5 (C-6) and 115.5 (C-2') 
further the correlations between methoxyl hydrogens at δ 3.89 with 
13C signal at δ 167.8 (C-3"). Compound 2 is thus (E)-methyl-O-prenyl 
ferulate which differs from boropinic acid [11] by the presence of 
methoxyl group at C-3” instead of the carboxyl. The 1H and 13C NMR 
data of 4 and 7 were similar to compound identified as know (E)-
methyl-5’-hydroxy-O-prenyl cinnamate [12] and integrifoliodiol 
[13], respectively. The 1H and 13C NMR data of 7, were identical to 
those reported to the cinnamic acid derivative known as 
integrifoliodiol [14].  

The other compounds were identified as limonin (3) [10], scopoletin 
(5) [18] and skimmianine (6) [13] by comparing their 1H and 13C 
NMR data with those reported previously. 

Effects of the compounds on α-amylase, α-glucosidase and 
lipase in vitro 

The α-amylase activity of compounds 1-3 and 5 evaluated at 500 
µg/mL, presented low percentage inhibition (21.74-31.57%). The 
cinnamic acid derivative (4) tested for concentrations from 7.8-
500 µg/mL showed IC50 of 156.77±7.57 µg/mL (Table 1). This may 
be considered a moderate effect on digestive enzyme α-amylase 
which is desirable since many side effects of α-glucosidase 
inhibitors as acarbose, for example, are due to the effect on α-
amylase that generates incomplete digestion of carbohydrates 
[19]. Scopoletin (5) showed strong α-glucosidase inhibition 
activity (IC50 0.89±0.02 µg/mL), this was about 50 times greater 
than the acarbose used in our test as control and reference drug in 
the treatment of type 2 diabetic patients. The amide (1), ferulic 
acid (2), cinnamic acid derivatives (4), and the coumarin (5) 
exhibited significant inhibitory activity on lipase when compared 
to the control drug (Orlistat).  

The literature shows a variety of plant species used as antidiabetics 
in various traditional systems of medicines including species in the 
family Rutaceae [20], but few examples of assays with substances 
inhibiting enzymes that can promote the therapy of diabetes and 
obsesity. The observed results for compounds of H. longifolia 
demonstrate their potential for developing drugs of natural origin 
for the prevention or treatment of metabolic syndrome in which the 
inhibition of digestive enzymes is desirable. These compounds 
differentiate from those currently used in therapy due to their ability 
to inhibit more than one enzyme complex. 

http://www.sigmaaldrich.com/catalog/product/sigma/l3126?lang=pt&region=BR
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Table 1: Inhibitory activity of compounds 1-5 on α-amylase, α-glucosidase and lipase 

 Compounds  IC50 (µg/mL) 
α-Amylase α-Glucosidase Lipase 

1  55.77±4.52 6.91±0.11 
2  26.82±1.78 8.14±1.37 
3  47.57±3.97 26.51±0.13 
4 156.77±7.57  3.86±0.66 
5  0.89±0.02 5.07±0.03 
Acarbose 33.12±4.09 51.5±5.6  
Orlistat   0.84±0.12 

 

 

Fig. 1: Structures of compounds isolated from Hortia longifolia 
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