EVALUATION OF BIOACTIVE METABOLITES FROM HALOPHILIC MICROALGAE DUNALIELLA SALINA BY GC – MS ANALYSIS

S. KRISHNAKUMAR1*, V. DOOSLIN MERCY BAI2 AND R. ALEXIS RAJAN3

1Department of Biomedical Engineering, Sathyabama University, Chennai – 600119, Tamil Nadu, 2Department of Biomedical Engineering, Rajiv Gandhi College of Engineering and Technology, Puducherry - 607402, 3Center for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam 629501, Tamil Nadu, India. Email: drskrishnakumarphd@gmail.com

Received: 12 July 2013, Revised and Accepted: 22 Aug 2013

ABSTRACT

Objective: In the last decade the screening of secondary metabolites and pharmacologically active compounds from marine microalgae has increased. In the present investigation Dunaliella salina has been chosen for the antibacterial metabolites studies.

Methods: Marine microalgae Dunaliella salina (green algae) was selected for the present secondary metabolites investigation. The effects of pH, temperature and salinity were tested for the growth of microalgae. The antibacterial effect of different solvent extracts of Dunaliella salina against selected human pathogens such as Vibrio cholerae, Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, Salmonella sp, Proteus sp., Streptococcus pyogens, Staphylococcus aureus, Bacillus megaterium and Bacillus subtilis were examined.

Results: The uppermost cell growth was observed when the medium adjusted with pH of 9.0 in 40ppt of salinity at 25°C during 9th day of incubation. Among the solvents used, chloroform + methanol (1:1) crude extract of Dunaliella salina exhibited maximum zone of inhibition (10.4 mm) against Vibrio cholerae. Methanol + chloroform (1:1) crude extract confirmed considerable activity against gram negative bacteria than gram positive pathogen. GC-MS analysis revealed that, the presence of unique chemical compounds like 3,3,5-trimethylheptane (M.W. 142.2) and n-Hexadecane (M.W. 226.2) respectively for the crude extract of Dunaliella salina.

Conclusion: These findings demonstrate that, the Methanol + chloroform (1:1) extract of Dunaliella salina displayed appreciable antimicrobial activity and thus have great potential solvent to extract bioactive compounds from the natural sources for current biomedical and pharmaceutical importance.

Keywords: Microalgae, Dunaliella salina, Secondary metabolites, GC-MS analysis.

INTRODUCTION

More than 70% of the Earth surface is covered with water, in which the most dominant group of living organisms is algae. Microalgae play a key role in the productivity of oceans. Marine organisms produce pharmacologically important diverse group of natural products [1, 2] that include algae, which produce novel and unexplored sources of potentially useful bioactive compounds that might represent useful leads in the development of new pharmaceutical agents [3]. Biologically active compounds from natural resources have always been of great interest to scientists working on different diseases [4]. Algae have been used in traditional medicine for a long time and also some algae have bactericidal, bactericidal, antifungal, antiviral and antitumor activity [5]. Microalgae are rich source of structurally novel and biologically active metabolites. So it has been studied as potential bioactive compounds of interests in the pharmaceutical industry [6, 7]. This group is extremely diverse and it constitutes a rich source of bioactive ingredients, such as vitamins [8], pigments, fatty acids, sterols and polysaccharides [9, 10]. Recurrent use of chemotherapeutic drugs and delay in adequate therapy has developed resistance of pathogens and cause some undesirable side effects and potentially increased mortality [11]. These limitations demand improved pharmacokinetics properties, while demand continued to researchers for new antimicrobial compounds from unexplored habitat for the development of novel drugs for already existing pathogens [12]. Hence the present study has paid attention on the potential applications of marine microalgae Dunaliella salina particularly for the treatment of human pathogenic microorganisms, which can be used as the alternative source for the commonly used dormant chemotherapeutic agents.

Dunaliella salina is a motile unicellular halotolerant green alga belonging to the class Chlorophyta and family Polylephalidaceae most frequently found naturally in habitats like salt marshes [13]. Dunaliella sp. produce a biomolecule of β-carotene which is used in the food [14], cosmetic, pharmaceutical industries as a coloring agent, antioxidant [15], anti-tumor agent [16], and heart disease preventive [17]. A wide range of pharmacologically active substance has been observed with different organic solvent extracts of microalgae. Several of the bioactive compounds found their application in human diseases and others as structural models for the development of new drugs. The antimicrobial activity of microalgae extracts is generally assessed using various organic solvents [18]. An organic solvent always provides a higher efficiency in extracting compounds for antimicrobial activity as compared to aqueous extract [19, 20]. Screening of organic solvent extracts from microalgae and other marine organism is a common approach to identify compounds of biomedical importance. In this context, an effort has been initiated to evaluate the efficacy of various organic solvents, antimicrobial activity and identify the chemical constituents and structure by GC-MS analysis of crude marine microalgae extracts against the most common human pathogenic bacteria.

MATERIALS AND METHODS

Microalgae culture collection

Marine microalgae Dunaliella salina (Kingdom: Plantae; Phylum: Chlorophyta; Class: Chlorophyceae; Order: Volvocales; Family: Dunaliellaceae; Genus: Dunaliella; Species: D. salina) was collected from Centre for Marine Fisheries Research Institute (CMFRI) Tuticorin, Tamilnadu, India in a sterile screw cap tube which was kept in a ice chest box and brought to our laboratory. The microalgae were sub-cultured and maintained as a pure culture was chosen for the present investigation.

Stock culture maintenance

Filtered sea water (100 ml) was taken into 250 ml of conical flask and a required nutrient of Miquell’s medium (solution-A: Potassium nitrate: 20.2 g; distilled water: 100ml; solution-B: Sodium orthophosphate 4g; Calcium chloride 2g; Ferric chloride 2g; Hydrochloric acid: 2 ml; distilled water: 100 ml) was dissolved. Solution A (0.55 ml) and solution B (0.5 ml) were added to one liter of filtered sterilized seawater and mixed meticulously to enrich the water and autoclaved. After sterilization 10% of actively growing
mid phase inoculum was transferred into culture flask aseptically. The inoculated flask was incubated at 28±2°C underneath the fluorescent light of 1000 lux for 8 days. When the maximum exponential growth phase was reached, the light was reduced for further growth.

Chemicals
All chemicals and media components were procured from Hi media Laboratories Private Limited, (Mumbai, India) used to perform the present investigation.

Growth optimization of marine microalgae
The Miquell’s medium (100 ml) was prepared in 250 ml of Erlenmeyer flask. The different growth parameter including pH (3.5, 7, 9 and 11), temperature (20, 25, 30 and 35°C) and salinity (20, 30 and 40ppt) were optimized independently. The salinity was authenticated with the help of 300 PX-Refactrometer (300 X 225-traditional hand land). Then 10 ml of actively growing log phase inoculum was transferred to the culture flask aseptically and reserved under the fluorescent light of 1000 lux for 14 days.

Determination of cell density
The determination of cell density was performed by the method given by James and Al-Khars [21]. Cell counts were examined using a Neubauer improved Haemocytometer (DHC-N01). The microalgae were treated with formalin to kill the cells and one drop of the culture was taken with the help sterile Pasteur pipette. After placing the cover slip on the haemocytometer, the pipetted culture samples were poured on the counting grid of the haemocytometer and left for a few minutes. The cells were counted with the aid of compound microscope (ADELTA OPTEC – DN10) under the magnification of 40X and the total cell count was calculated by the following formula:

\[
\text{Total cell count} = \frac{\text{Number of cells counted} \times \text{Number of square in a group}}{\text{Number of square counted}}
\]

Microalgae extract preparation using different organic solvents
The microalgae cells were centrifuged (REMI-R24) at 200 rpm for 10 minutes. The pellet was collected and air dried under room temperature to get a fine powder. Dried microalgae cells of 10g were extracted in 100ml of different organic solvents specifically Acetone, n-butanol, Isopropanol, Acetone + n-butanol (1:1), Acetone + Isopropanol (1:1), Acetone + Chloroform (1:1), Butanol + Isopropanol (1:1), Chloroform + Methanol (1:1) separately under continuous stirring of 50rpm for 7 days at room temperature. The solution was filtered through Whatman No.1 filter paper. Then the filtrate was dried using desiccator (Vacuum Dry - seal Desiccator 12”) at 40°C for 24h. The dried powder was suspended with respective solvents to give 50mg/ml of crude extract. The crude extract was kept in sealed container and stored in a refrigerator for further antimicrobial and GC-MS studies.

Human pathogens
The human gram negative pathogens such as Vibrio cholerae, Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, Salmonella sp, Proteus sp, and gram positive pathogens namely Streptococcus pyogenes, Staphylococcus aureus, Bacillus megaterium and Bacillus subtilis collected from Kanyakumari Medical College and Hospital (KMCH), Kanyakumari District, Tamilnadu, India and maintained in our laboratory was chosen for the present antibacterial susceptibility study.

Antibacterial assay
Antibacterial activity was determined against the chosen human pathogens using paper disk assay (PDA) method described by El Masry et al. [22]. Whatman No.1 filter paper disk of 6mm diameter was incised and sterilized by autoclaving. The sterile disk was saturated with different solvent extracts (50µl/per disk). Control disk was also sustained for each extract by impregnating respective organic solvent alone. Muller Hinton Agar (MHA) plates were prepared and overnight broth culture (1.2×10^8 cfu/ml) of test pathogens were inoculated uniformly using sterile cotton swab. The impregnated disks were placed on the plates using sterile forceps properly spaced at equal distance. Triplicates were maintained for each test pathogen. The plates were incubated at 37°C for 24h. The zone of inhibition was measured and expressed in mm in diameter.

GC-MS analysis of microalgae extract
The gase chromatography combined with mass spectrometry detection technique is a qualitative and quantitative analysis of the crude extracts with high sensitivity even with trace amount of constituents. Identification of the chemical moiety of crude extracts of Dunaliella salina which showed valuable antibacterial activities against the selected human pathogens was analyzed. The GC-MS analysis was done by standard specification by dissolving 10mg of crude extracts in one milliliter of ethyl acetate. The aliquot of 0.1 µl was injected automatically into 0.25 mm x 25 m column of GC-MS model (GC 17A, Japan) 5% phenyl poly silicone as stationary phase. Helium was used as a carrier gas at 17.69 psi pressure with the flow of 3ml/min at the flow rate of 0.4µm/min. The temperature gradient program was implemented for the evaporation of organic solvent to identify the chemical constituent. The initial temperature was 70°C and gradually accelerated to 250°C at a rate of 10°C per minute. The sample was injected after 18 minutes at 250°C. The maximum peaks representing mass to charge ratio characteristics of the antimicrobial fractions were compared with those in the mass spectrum library of the corresponding organic compounds [23]. The concentration of such compound was calculated by the following formula:

\[
\text{Compound concentration percentage} = \left(\frac{P_1}{P_2} \right) \times 100
\]

Where, P1 is the peak area of the compound and P2 is whole peak areas in the fractionated extracts.

Data analysis
The data were statistically analyzed through TWO way ANOVA using MINITAB software and means for different parameters were separated by applying least significant difference (LSD) test at 0.05 % level of probability to know their significance status [24].

RESULTS
Microalgae Culture conditions
Marine halophilic microalgae posses the flourishing source of bioactive compounds to compete the harmful pathogens. Culture media optimization is the important aspect to be considered in the development of fermentation technology. Large scale production of algal metabolites usually involves a wide range of search for optimization of culture conditions. This was achieved through a systematic study by altering the diverse culture conditions to the microalgae. Optimum culture conditions relative to temperatures, pH and salinities levels were adopted for marine microalgae D. salina. The growth characteristic of microalgae at various temperatures is shown in Fig. 1. Maximum cell growth of microalgae was recorded at 25°C and minimum growth at 35°C on 9th day of incubation. The cell growth of microalgae at different pH is depicted in Fig. 2. Maximum cell growth was observed at the pH of 9.0 and minimum growth was recorded at the pH of 5.0 on 9th day of incubation. The microalgae cell growth rate was studied at different salinities such as 20, 30 and 40 ppt concentration. Algal cell growth at various salinity is presented in Fig. 3. Minimum growth was recorded at 20 ppt and maximum cell growth was observed at 40 ppt on 9th day of incubation after that gradually declined. These results confirmed that the microalgae Dunaliella salina belongs to halophytes. Logarithmic increase in the cell count of microalgae was observed from first day to 8th day with the maximum value on 9th day of incubation after which there was a gradual decline in almost all the culture conditions.

Antibacterial assay
Microalgae extracts were prepared using different organic solvents for antibacterial assay by paper disk assay method. Antibacterial activity of crude extract is represented in Table 1. Among the solvents used, chloroform + methanol (1:1) extract of Dunaliella salina exhibiting maximum zone of inhibition (10.4mm) against Vibrio cholerae is shown in Fig. 4. However Isopropanol
solvent extract showed minimum zone of inhibition (2.0mm) against *Proteus* sp. The highest inhibition zone was observed in chloroform+ methanol (1:1) extract of *Dunaliella salina* against gram negative bacteria *Vibrio cholerae* (10.4mm) and gram positive bacteria *Staphylococcus aureus* (10.0mm) and *Streptococcus pyogenes* (10.0mm) and Acetone + Chloroform (1:1) extract against *Streptococcus pyogenes* (10.0mm) respectively. Two-way ANOVA was executed on the data of antibacterial activity of bioactive substance extracted from *Dunaliella salina* using different organic solvents and their combinations against selected human pathogens is depicted in Table 2. Variation due to bacterial pathogens P-value was > 0.05 is statistically non-significant. Variation due to organic solvent based extracts P-value was < 0.05 is statistically significant.

![Fig. 1: Growth characterization of *D. salina* at various temperature (°C)](image1.png)

![Fig. 2: Growth characterization of *D. salina* at various pH](image2.png)

![Fig. 3: Growth characterization of *D. salina* at various salinity](image3.png)

![Fig. 4: Antimicrobial activity of different solvent extracts of *D. salina* against *Vibrio cholerae*](image4.png)

A- acetone + n-butanol (1:1); B – isopropanol; W - chloroform + methanol; C - control
Table 1: Antimicrobial activity of bioactive substance extracted from D. salina

<table>
<thead>
<tr>
<th>Solvent used</th>
<th>Zone of inhibition (mm)</th>
<th>Control</th>
<th>Vibrio cholerae</th>
<th>Klebsiella pneumonia</th>
<th>Escherichia coli</th>
<th>Staphylococcus aureus</th>
<th>Bacillus megaterium</th>
<th>Pseudomonas aeruginosa</th>
<th>Bacillus subtilis</th>
<th>Salmonella sp.</th>
<th>Proteus sp.</th>
<th>Staphylococcus pyogenes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>-</td>
<td>3.8+</td>
<td>9 ±</td>
<td>9 ±</td>
<td>4.0+</td>
<td>2.9 +</td>
<td>2.8+</td>
<td>3.5 +</td>
<td>9 ±</td>
<td>9 ±</td>
<td>9 ±</td>
<td>9 ±</td>
</tr>
<tr>
<td>n-butanol</td>
<td>-</td>
<td>0.65</td>
<td>1.58</td>
<td>0.70</td>
<td>0.72</td>
<td>0.65</td>
<td>0.45</td>
<td>0.81</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>-</td>
<td>1.14</td>
<td>0.53</td>
<td>0.54</td>
<td>0.54</td>
<td>0.83</td>
<td>1.34</td>
<td>0.83</td>
<td>0.83</td>
<td>1.14</td>
<td>0.70</td>
<td>3.6+</td>
</tr>
<tr>
<td>Acetone + n-butanol</td>
<td>(1:1)</td>
<td>1.34</td>
<td>1.14</td>
<td>0.83</td>
<td>0.85</td>
<td>0.83</td>
<td>0.71</td>
<td>1.07</td>
<td>1.22</td>
<td>0.55</td>
<td>0.63</td>
<td></td>
</tr>
<tr>
<td>Acetone + Isopropanol</td>
<td>(1:1)</td>
<td>1.38</td>
<td>0.85</td>
<td>0.70</td>
<td>0.89</td>
<td>1.14</td>
<td>0.85</td>
<td>1.03</td>
<td>0.33</td>
<td>0.89</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>Acetone + Chloroform</td>
<td>(1:1)</td>
<td>0.75</td>
<td>0.54</td>
<td>0.75</td>
<td>0.85</td>
<td>1.14</td>
<td>0.85</td>
<td>1.03</td>
<td>0.33</td>
<td>0.89</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>Butanol + Isopropanol</td>
<td>(1:1)</td>
<td>9 ± 0.70</td>
<td>8.4 ±</td>
<td>8.8 ±</td>
<td>8 ± 1</td>
<td>5.1 +</td>
<td>10.2+</td>
<td>9.6 ±</td>
<td>9.4 ±</td>
<td>9.2 ±</td>
<td>8.4 ±</td>
<td>6.1 +</td>
</tr>
<tr>
<td>Chloroform + Methanol</td>
<td>(1:1)</td>
<td>1.14</td>
<td>0.54</td>
<td>0.75</td>
<td>0.70</td>
<td>0.89</td>
<td>1.22</td>
<td>1.34</td>
<td>0.83</td>
<td>0.70</td>
<td>0.70</td>
<td></td>
</tr>
</tbody>
</table>

* * No activity; Each value is the mean ± SD of three individual estimates

Table 2: Two-way ANOVA for the data on antibacterial activity of bioactive substance extracted from D. salina using different organic solvents and their combinations against selected human pathogens

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total variance</td>
<td>484.185</td>
<td>79</td>
<td>336262</td>
<td>0.65984</td>
<td>> 0.05*</td>
</tr>
<tr>
<td>Variation due to bacteria</td>
<td>30.2636</td>
<td>9</td>
<td>336262</td>
<td>0.65984</td>
<td>> 0.05*</td>
</tr>
<tr>
<td>Variation due to solvent based extracts</td>
<td>132.864</td>
<td>7</td>
<td>189806</td>
<td>3.72449</td>
<td>< 0.05**</td>
</tr>
<tr>
<td>Error variance</td>
<td>321.057</td>
<td>63</td>
<td>509615</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Statistically non-significant; **Statistically significant

GC – MS analysis

Marine microalgae have the ability to produce a variety of natural products due to adverse environmental habitat, which are not produced by the terrestrial counterpart. Identification of marine natural product chemistry is a current scenario of research to develop a unique compound in the field of biomedical and pharmaceutical industries. This research provides an exceptional opening for the investigation of novel compound from halophilic microalgae for the treatment of human diseases. The present investigation was undertaken to discover the antibacterial compound from the organic solvent extract of Dunaliella salina using GC-MS analysis is illustrated in Fig 5a. The number of compounds (peaks) reported in the crude extract is portrayed in Table 3. The mass spectra of the compounds were investigated with those similar in the PubChem database and some of our chemical components are reported to have a known biomedical value in the pharmacological fields (data not shown). The chief constituent of the crude extract of Dunaliella salina having unique chemical compounds namely 3, 3, 5-Trimethylheptane (M.W. 142.2) is presented in Fig 5c and n-Hexadecane (M.W. 226.2) is presented in Fig 5e. These secondary metabolites pay for a new avenue for future research to pinpoint the chemical constituents that possess antimicrobial activity.

Fig 5a: Detection of mixed secondary metabolites produced by D. salina using GC-MS analysis
Fig. 5b: Peak separation at the retention time of 16.033; base peak 56.85

Fig. 5c: 3, 3, 5-Trimethylheptane (M.W. 142.2)

Fig. 5d: Peak separation at the retention time of 18.625; base peak 56.90

Fig. 5e: n-Hexadecane (M.W. 226.2)
DISCUSSION

The production of microalgal bioactive metabolites requires large quantities of algal biomass. The optimization procedure should be done under the same conditions as the desired production processes. We have been documenting successful cultivation and harvesting methods for several microalgae species. Researchers have been using various solvents and extraction conditions to isolate and identify bioactive compounds from microalgae. The current study was undertaken to optimize the culture conditions for the production of bioactive compounds from D. salina.

On the 9th day of incubation, the cell number was maintained at a salinity of 18% NaCl w/w. The bioactive compounds were detected in several samples. The growth pattern of microalgae culture media at different pH was observed at the pH of 8.5. The algal growth was increased with increasing pH. The growth pattern was confirmed by mass spectrometry (MS).

The production of microalgal bioactive metabolites requires large quantities of algal biomass. The optimization procedure should be done under the same conditions as the desired production processes. We have been documenting successful cultivation and harvesting methods for several microalgae species. Researchers have been using various solvents and extraction conditions to isolate and identify bioactive compounds from microalgae. The current study was undertaken to optimize the culture conditions for the production of bioactive compounds from D. salina.

On the 9th day of incubation, the cell number was maintained at a salinity of 18% NaCl w/w. The bioactive compounds were detected in several samples. The growth pattern of microalgae culture media at different pH was observed at the pH of 8.5. The algal growth was increased with increasing pH. The growth pattern was confirmed by mass spectrometry (MS).

In this study, taxonomic information about cyanobacteria and green algae has been found potential for the production of several compounds including biochemically important organic metabolites such as 3-Methyl-2-(2-oxopropyl)- furan, 2-trimethylpentane, 2-ethylbutyl 3-hexyl hydroperoxide and methyl heptane. These compounds are extensively used in various industrial applications. The fractionation of microalgae crude extract was achieved using several solvents.

The fractionated matrices of D. salina were obtained and chemically characterized by GC-MS analysis. The MS analysis of crude extract of D. salina showed promising antibacterial activity. The antimicrobial activity of D. salina has been attributed to compounds belonging to several chemical classes - including indoles, terpenes, acetogenins, phenols, fatty acids and volatile halogenated hydrocarbons [41, 42]. Antimicrobial activity depends on both algal species and the solvents used for their extraction [43]. The antimicrobial activity of algae is generally assayed using various organic solvents, such as acetone, ether and chloroform, methanol [44]. An organic solvent always provides a higher efficiency in extracting compounds from antimicrobial activity [45]. However, the antimicrobial activity detected in several pressurized extracts from D. salina may be explained not only by several fatty acids, but also by such compounds as cycloclan, neophtyadiene and phytol [46]. The methanol extract showed more potent antimicrobial activity than dichloromethane, petroleum ether and ethyl acetate extracts of Spirulina platensis [47]. Karabay-Yavasoglu et al. [48] endorsed that methanolic and chloroform extracts of marine algae Jania rubens had significant antimicrobial activity against gram negative and gram positive bacteria. These findings corroborated with our present observation of the combination of methanol with chloroform (1:1) extract showed promising antibacterial activity against gram negative and gram positive bacteria, as shown in Table 1. In contrast chloroform and ethyl acetate extract obtained from marine algae Cystoseira crinita and Cystoseira sedgeleys showed a higher antifungal activity Mhadhebi et al. [49].

Table 3: Number of compounds (peaks) reported by GC-MS analysis for the extract of D.salina

<table>
<thead>
<tr>
<th>PK. No.</th>
<th>R. Time</th>
<th>L. Time</th>
<th>F. time</th>
<th>Area</th>
<th>Height</th>
<th>A/H(sec)</th>
<th>MK % Total Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>10.022</td>
<td>9.908</td>
<td>10.150</td>
<td>1762104</td>
<td>321384</td>
<td>5.479</td>
<td>8.50</td>
</tr>
<tr>
<td>2.</td>
<td>11.247</td>
<td>11.125</td>
<td>11.442</td>
<td>2163552</td>
<td>302440</td>
<td>7.154</td>
<td>10.48</td>
</tr>
<tr>
<td>3.</td>
<td>16.030</td>
<td>15.883</td>
<td>16.258</td>
<td>1026572</td>
<td>171569</td>
<td>5.984</td>
<td>4.970</td>
</tr>
<tr>
<td>4.</td>
<td>17.198</td>
<td>17.108</td>
<td>17.317</td>
<td>615967</td>
<td>111829</td>
<td>5.508</td>
<td>2.98</td>
</tr>
<tr>
<td>5.</td>
<td>18.625</td>
<td>18.500</td>
<td>18.783</td>
<td>3678854</td>
<td>625312</td>
<td>5.895</td>
<td>17.80</td>
</tr>
<tr>
<td>6.</td>
<td>20.204</td>
<td>20.075</td>
<td>20.367</td>
<td>2172045</td>
<td>320063</td>
<td>6.781</td>
<td>10.51</td>
</tr>
</tbody>
</table>

DISCUSSION

The production of microalgae bioactive metabolites requires large quantities of algal biomass. The optimization procedure should be done under the same conditions as the desired production processes. We have been documenting successful cultivation and harvesting methods for several microalgae species. Researchers have been using various solvents and extraction conditions to isolate and identify bioactive compounds from microalgae. The current study was undertaken to optimize the culture conditions for the production of bioactive compounds from D. salina.

On the 9th day of incubation, the cell number was maintained at a salinity of 18% NaCl w/w. The bioactive compounds were detected in several samples. The growth pattern of microalgae culture media at different pH was observed at the pH of 8.5. The algal growth was increased with increasing pH. The growth pattern was confirmed by mass spectrometry (MS).

In this study, taxonomic information about cyanobacteria and green algae has been found potential for the production of several compounds including biochemically important organic metabolites such as 3-Methyl-2-(2-oxopropyl)- furan, 2-trimethylpentane, 2-ethylbutyl 3-hexyl hydroperoxide and methyl heptane. These compounds are extensively used in various industrial applications. The fractionation of microalgae crude extract was achieved using several solvents.

The fractionated matrices of D. salina were obtained and chemically characterized by GC-MS analysis. The MS analysis of crude extract of D. salina showed promising antibacterial activity. The antimicrobial activity of D. salina has been attributed to compounds belonging to several chemical classes - including indoles, terpenes, acetogenins, phenols, fatty acids and volatile halogenated hydrocarbons [41, 42]. Antimicrobial activity depends on both algal species and the solvents used for their extraction [43]. The antimicrobial activity of algae is generally assayed using various organic solvents, such as acetone, ether and chloroform, methanol [44]. An organic solvent always provides a higher efficiency in extracting compounds from antimicrobial activity [45]. However, the antimicrobial activity detected in several pressurized extracts from D. salina may be explained not only by several fatty acids, but also by such compounds as cycloclan, neophtyadiene and phytol [46]. The methanol extract showed more potent antimicrobial activity than dichloromethane, petroleum ether and ethyl acetate extracts of Spirulina platensis [47]. Karabay-Yavasoglu et al. [48] endorsed that methanolic and chloroform extracts of marine algae Jania rubens had significant antimicrobial activity against gram negative and gram positive bacteria. These findings corroborated with our present observation of the combination of methanol with chloroform (1:1) extract showed promising antibacterial activity against gram negative and gram positive bacteria, as shown in Table 1. In contrast chloroform and ethyl acetate extract obtained from marine algae Cystoseira crinita and Cystoseira sedgeleys showed a higher antifungal activity Mhadhebi et al. [49].

Table 3: Number of compounds (peaks) reported by GC-MS analysis for the extract of D.salina

<table>
<thead>
<tr>
<th>PK. No.</th>
<th>R. Time</th>
<th>L. Time</th>
<th>F. time</th>
<th>Area</th>
<th>Height</th>
<th>A/H(sec)</th>
<th>MK % Total Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>10.022</td>
<td>9.908</td>
<td>10.150</td>
<td>1762104</td>
<td>321384</td>
<td>5.479</td>
<td>8.50</td>
</tr>
<tr>
<td>2.</td>
<td>11.247</td>
<td>11.125</td>
<td>11.442</td>
<td>2163552</td>
<td>302440</td>
<td>7.154</td>
<td>10.48</td>
</tr>
<tr>
<td>3.</td>
<td>16.030</td>
<td>15.883</td>
<td>16.258</td>
<td>1026572</td>
<td>171569</td>
<td>5.984</td>
<td>4.970</td>
</tr>
<tr>
<td>4.</td>
<td>17.198</td>
<td>17.108</td>
<td>17.317</td>
<td>615967</td>
<td>111829</td>
<td>5.508</td>
<td>2.98</td>
</tr>
<tr>
<td>5.</td>
<td>18.625</td>
<td>18.500</td>
<td>18.783</td>
<td>3678854</td>
<td>625312</td>
<td>5.895</td>
<td>17.80</td>
</tr>
<tr>
<td>6.</td>
<td>20.204</td>
<td>20.075</td>
<td>20.367</td>
<td>2172045</td>
<td>320063</td>
<td>6.781</td>
<td>10.51</td>
</tr>
</tbody>
</table>
obtained, methanol + chloroform (1:1) preferred as the most suitable organic solvent to extract bioactive compounds from marine microalgae for current biomedical and pharmaceutical importance.

CONCLUSION

The following optimum cultivating conditions such as salinity of 40ppt, temperature of 20°C and a high pH of 9.0 on 9th day of incubation period were maintained to get a maximum algal biomass of D. salina for the possible methods for bioactive metabolites extraction. Further research is required regarding exact chemical constituent responsible for the biocidal activity and its clinical trial for human therapeutic applications. This research could open an interesting new facet of microalgae biotechnology in future. The production of new antibiotic substances and production of biofuels will make D. salina a main topic for many future microalgae investigations.

ACKNOWLEDGEMENT

The authors are grateful to Sathyabama University, Department of Biomedical Engineering, Chennai, Tamil Nadu, India and Rajiv Gandhi College of Engineering and Technology, Department of Biomedical Engineering, Puducherry, India for providing all the needed facilities complete this work successfully. Our exceptional thanks to Dr. AK Kumaresan, Professor and Head, ICAR centre, Sri Parakarthi College for women, Courtallam, Tamilnnda, India for the valuable guidance and constant support.

REFERENCES

