NEUROTRANSMITTERS AND RECEPTORS AS THE TARGETS FOR ADDICTION TREATMENT: A SHORT REVIEW

B. SRINIVASA REDDY1, M. SATHISH KUMAR2, N. V. RAMA RAO2, A. NARENDRA BABU2, N. RAMA RAO2, J. MANJUNATHAN2

1Chalapathi Institute of Pharmaceutical Sciences, Lam, Guntur, 2CAS in Botany, University of Madras, Guindy Campus, Chennai.
Email: bsrpharmacy80@gmail.com, jmanjunathan@gmail.com

Received: 29 Dec 2012, Revised and Accepted: 02 Feb 2012

ABSTRACT

Addiction is an important health problem which is characterized by a chronic relapsing disease with implications in social and economic life. Addiction research begins with the neurotransmitters and their mechanisms by which drugs act and shows their effects. In this review we have presented an overview to summarize the role of neurotransmitters in addiction like Dopamine, Glutamate, Noradrenaline and Serotonin. Mesocorticolimbic dopamine system plays a crucial role in the mechanism responsible for the rewarding effects. All neurotransmitter levels in the addiction are based on the stimulant and inhibitory actions of the drugs. Receptors are the major targets for the neurotransmitters and drugs to show their actions. Drugs target the muscarinic and nicotinic receptors, which play a major role in the psycho stimulant addiction on the behavioral effects. Drugs which are having addiction properties are due to alterations in the intracellular pathway and also expression of gene products upon signaling.

Keywords: Addiction, Relapsing disease, Neurotransmitters, Receptors, Mesocorticolimbic system.

INTRODUCTION

According to International Classification of Diseases (ICD-10) Addiction is defined as the dependence syndrome as being a cluster of physiological, behavioral, and cognitive phenomena in which the use of a substance or a class of substances takes on a much higher priority for a given individual than other behaviors that once had greater value.

In 1964 a WHO Expert Committee introduced the term ‘dependence’ to replace the terms ‘addiction’ and ‘habituation’. The term can be used generally with reference to the whole range of psychoactive drugs (drug dependence, chemical dependence, substance use dependence), or with specific reference to a particular drug or class of drugs (e.g. alcohol dependence, opioid dependence). While ICD-10 describes dependence in terms applicable across drug classes, there are differences in the characteristic dependence symptoms for different drugs.

Neuroplasticity is the brain’s ability to reorganize itself by forming new neural connections throughout life. Neuroplasticity allows the neurons (nerve cells) in the brain to compensate for injury and disease and to adjust their activities in response to new situations or to changes in their environment.

Role of Neurotransmitters in Addiction

Dopamine

Dopamine (DA) is an excitatory neurotransmitter mainly present in the central nervous system. DA receptors have subtypes they are mainly two families D1 [D1, D5] and D2 [D2, D3, D4] families, which are classified based on the pharmacological action. Activation of D1 family receptors increases cyclic adenosine 3 , 5-monophosphate (cAMP) through stimulation of adenylyl cyclase via Gs stimulatory G-proteins. But activation of D2-family receptors decreases cAMP through Gi (inhibitory) pathway. The cAMP is formed from the ATP through an enzyme adenylyl cyclase (AC) and it is metabolized by enzyme phosphodiesterase (PDE) which is present the cytoplasm. Intracellular cAMP activates the kinase enzymes like protein kinase A (PKA) and G-protein receptor kinase3 (GRK3). PKA phosphorylates receptors and channels, and activates important transcription factors like cyclic adenosine monophosphate response-element binding protein (CREB) [1-3]. Drugs which are having addiction properties are due to alterations in the intracellular pathway and also expression of gene products upon signaling. Some examples include brain-derived neurotrophic factor, cyclin dependent kinase5, nuclear factor kappa-B, Glur1 [AMP A glutamate receptor sub-type-1], among others, implicated in drug-induced neuroplasticity[4, 7].

Endogenous DA levels are increased in the VTA, NAc, OFC and thalamus when the stimulant substances are used such as nicotine, cocaine and methamphetamine[8] and also these stimulant drugs associated with reward system there by increases the release dopamine intensively compared normal reward system. Reward system of DA in the brain includes the VTA and NAc, where sequence of reaction occurs based on the drug stimuli and behavior, i.e., drug-seeking consumption. These drugs stimulation causes increased extracellular DA firing to initiate craving [9]. In drug-dependent subjects, craving is correlated with the amount DA release [10]. Subsequently, craving is hypothesized to be due to neuro adaptations of the mesoliminc DB system [11, 12]. Furthermore, the DA system is implicated in attentional bias towards drug-related stimuli and also DA system is associated with the development and storage of memory [13].

Mesocorticolimbic Circuitry

It is a drug substrate for Dopaminergic cell bodies in the VTA and their projections to the NAc and PFC, and GLU projections from the PFC to both the VTA and NAc, generally define the fundamental circuitry of the Mesocorticolimbic reward system. Other important brain structures associated with motivational memories and drug taking and dependence include the amygdala, hippocampus and hypothalamus [14]. Although other Neurotransmitter systems are clearly involved, studies strongly support that activation of them Mesocorticolimbic system is key to the Reinforcing effects produced by drug in humans [15].

Dopamine and Glutamate

Cytokine mechanisms in addiction involving dopamine, glutamate, and their intracellular and genomic targets have been the focused in both the areas of reward-related learning and addiction. These two neurotransmitter systems, widely distributed in many regions of cortex, limbic system, and basal ganglia, appear to play a key integrative role in motivation, learning, and memory. It is currently believed that coordinated molecular signaling of dopaminergic and coordinated molecular signaling of dopaminergic and glutamatergic systems, particularly through dopamine-D1 D1 and glutamate N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors, is a critical event in the induction of intracellular transcriptional and translational cascades, leading to adaptive changes in gene
expression and synaptic plasticity, the reconfiguring of neural networks, and ultimately behavior [16, 17, 18, 19].

Synaptic proteins are synthesized by the gene expression and the gene is expressed when the Phosphorylated CREB (cyclic adenosine monophosphate response-element binding protein) is binding to numerous response elements in many genes (such as c-fos, c-jun, NGFI-B, homer1A, ania3, arc, and zif268 [NGFI-A, krox-24]). CREB is acting through the calcium and PKA pathway, this CREB in corticostriatal region plays a major role in detection of coincidence and learning, this process is transduced by the glutamate and dopamine signals, respectively [20]. Phosphorylations of many intracellular proteins are major by the enzyme protein phosphatase-1 (pp-1) [21]. Induction of synaptic plasticity is mainly genes and transcription factors. Corticostriatal region have abundant genes and transcription factors. Genes which are responsible for the generation and phosphorylation of CREB is dependent on NMDA and/or Dopamine D-1 dependent. Drugs which are antagonize the NMDA and/or Dopamine D-1 actions they inhibit the generation of CREB [22, 23, 24, 25, 26, and 27]. Although how these mechanisms translate into stable synaptic change and alter atoning behavior remain unknown.

Noradrenalin
Noradrenalin has more stimulant activity to increase in dopamine and it regulates the dopamine transmission in the mesocorticolimbic circuit. Cell bodies of the noradrenalin projected at the nucleus accumbens and ventral tegmental area (VTA) from brain stem A1 and A2 areas as well as locus ceruleus (LC) [28]. Noradrenalin acts through the excitatory mechanisms and these projections directly stimulate the dopamine cell firing and indirectly noradrenergic neurons projecting to the prefrontal cortex (PFC) affect the dopamine neurotransmission in the nucleus accumbence [29].

Serotonin
5-HT (Serotonin) is also play a role in brain reward system. Neurotransmission is mediated by the 5-HT receptors, till now 14 different 5-HT receptor subtypes are identified. Among these 5-HT1B involved in reward system, 5-HT1B receptors are strongly expressed in mesocorticolimbic system [30]. Release of 5-HT is regulated by the auto receptors present in the nerve endings [31] and hetero receptors located on dopaminergic, glutamatergic, GABA-ergic or cholinergic neurons [32].

Muscarinic receptor
Substantia nigra and ventral tegmental area (VTA) have the dopaminergic projections these projections represent the pathway for the natural reward system, drug reward system and these projections made by dopamine p-containing neurons. Muscarinic receptor M1, M2, M3, M4, are identified and newly M5 receptors mRNA are also identified. mRNA of the muscarinic receptor present in dopamine p-containing neurons. Heroin addiction is treated by the scopolamine, i.e., non selectivity of muscarinic receptor.

Nicotinic Receptor
The brain contains different neurotransmitter systems, such as a DAergic, serotonergic, GABAergic and glutamatergic system. In addition, an extensive network of connections is modulated by acetylcholine (ACh): the cholinergic system. The receptors of the cholinergic system are divided into muscarinic acetylcholine receptors (mAChRs) and nicotinic acetylcholine receptors (nAChRs). Because varenicline has a strong affinity to the mAChRs and is blocked by nAChR blockers, this is the reason why we cannot exclude that different neurotransmitter systems activated through the mAChRs, could themselves activate the DA system. This could be executed through intermediate inhibitory GABAergic and excitatory glutamatergic synapses and would lead to a further regulation of the activity of DA cells in the VTA and downstream on the reward system. Through mAChR activation, nicotine enhances the actions of glutamate and DA, thus providing a potential mechanism of action for the addictive properties of the drug. Different studies prove evidence that modulating nAChR could play a role in drug dependence and is not limited to just nicotine dependence. Exposure of whole cells to ethanol for only 3h resulted in long-lasting changes in nAChR expression levels that remained elevated for nearly a week following withdrawal [65]. Also, polymorphisms in the β2 subunit

Nicotine and the dopaminergic system
One third of the e4β2 nAChRs are located on DAergic cell bodies in the mesostriatal DA system [41, 42]. Subsequently, nicotine enhances DA release through presynaptic nAChRs in striatal synapses and is thus characteristic for reward-related signaling [43, 44, 45, 46 and 47]. When pretreated with a nAChR blocker, no increase in DA release is observed after nicotine administration [48, 49]. Moreover, knockout mice lacking the nAChR β2-subunit showed no increased DA levels in dorsal and ventral striatum and fail to maintain nicotine self-administration as compared to wild-type siblings [50, 51]. Additionally, the presence of e4-containing nAChRs is sufficient for nicotine-induced locomotor activity [52]. In summary, stimulation of the nAChRs results in increases in extracellular DA, an effect that seems to be dependent on the presence of e4β2 nAChRs, and is blocked by nAChR blockers such as mecamylamine.

Role of nicotinic acetylcholine receptors in drug dependence
A direct and indirect role for nAChRs in drug dependence has been observed. For example, nAChRs are found in the hippocampus, where they directly facilitate the flow of excitatory information through the process of synaptic strengthening or Long-Term Potentiation (LTP) [53, 54 and 55]. LTP is a process contributing to the maintenance of drug dependence and relapse through cellular mechanisms important in learning and memory [55, 56]. In addition, nAChRs are present in the frontal cortex, where they are directly implicated in attention, memory, and associative learning [57, 58]. Indirectly, nAChR activation influences neurotransmitter systems, such as the choline, glutamate, norepinephrine, DA, serotonin, GABA, and endocannabinoid systems, and these changes in turn affect cognitive functioning with a role in drug dependence. For example, the endocannabinoid system is implicated in reward association; glutamate projections in the VTA are related with the development of incentive sensitization for drug use and play a crucial role in cue-sensitization [52]. Furthermore, the endocannabinoid system is implicated in reward association; glutamate projections in the VTA are related with the development of incentive sensitization for drug use and play a crucial role in cue-sensitization [52]. Furthermore, the endocannabinoid system is implicated in reward association; glutamate projections in the VTA are related with the development of incentive sensitization for drug use and play a crucial role in cue-sensitization [52].
gene of the nAChR were found to be associated with subjective responses to alcohol looked at the density and distribution of DA terminal arbor, using α4 subunit knockout mice [66]. Cocaine, amphetamine, haloperidol or nicotine was administered for 8 weeks in order to assess the role of the α4 nAChR in regulating the arbor size of DAergic neurons. The results showed normal functioning of DA D2 receptor signaling in α4 knockout mice, but reduced reuptake of DA and an altered profile of the DA transporter (DAT). This study provides additional evidence for a role of nAChRs in altering DA response, specifically by regulating terminal arbor size of DA neurons [67]. Additionally, in acute dependence, nAChRs in the VTA seem to be important for modulating morphine-state-dependent learning [68]. In summary, nAChRs seem to contribute to the development of drug dependence both directly and indirectly. Nicotinic AChRs contribute to hippocampal LTP important for learning and memory, processes that are crucial for the development of drug dependence. Indirectly, nAChRs activate the terminal fields of the DA reward system in the brain that contribute to persistence of drug dependence.

CONCLUSION

Although significant advances have been made over the past several decades in the development of effective treatments for addictions, they remain substantial public health problems. The development of neuroscience methodologies is still to improve for understanding the neuronal mechanisms and treatment. Concurrent investigation of substance and nonsubstance addictions should be especially informative.

ACKNOWLEDGEMENT

The authors report that they have no financial conflicts of interest with respect to the content of this manuscript. Dr. Rama Rao Nadendla helped for financial support. Dr. Narendra Babu Ankeri helped in the review of the manuscript. Dakshin Kumar Manoharan and Venkata Rama Rao N helped in the design of review.

REFERENCES


64. Dohrmann, D.P., Reiter, C.K. Ethanol modulates nicotine induced upregulation of nACHRs. Brain Res. 2003; 975: 90–98.

