EFFECT OF DIFFERENT ADDITIVES ON CELECOXIB RELEASE

AHMED M. SAMY1, MAMDOUH M. GHORAB2, SHADEED G. SHADEED 2 AND YASMIN I. MORTAGI

1Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt, 2Department of Pharmaceutics, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt, 3Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Industries, Sinai University, El-Arish, North Sinai, Egypt. Email: yasminmortagi@yahoo.com

Received: 26 Feb 2013, Revised and Accepted: 18 Apr 2013

ABSTRACT

Aim: study the effect of addition of different additives such as hydrophilic polymers like (HP-β-CD, PVPK30 and Urea) by solid dispersion technique and hydrophobic polymers like (Ethyl cellulose and Celulose acetate butyrate) by microencapsulation technique on release of Celecoxib.

Methods: solid dispersions for hydrophilic polymers were formulated in drug polymer ratio 1:2.5, 1:5, 1:7.5 and 1:10 using solvent evaporation method. The emulsion solvent-evaporation technique was used for hydrophobic polymers in drug polymer ratio 1:2, 1:4 and 1:6 for preparation of Celecoxib microcapsules. The prepared solid dispersions and microcapsules were examined for the production yield, the drug content, the micromeric properties and in-vitro drug release.

Results: hydrophilic polymers improved dissolution of poorly water-soluble Celecoxib while hydrophobic polymers sustained the release of Celecoxib.

Conclusion: The best formula for the solid dispersion after in vitro release test was CXB-HP-β-CD (1:10), but for the microcapsules was CXB-EC (1:2).

Keywords: Celecoxib, Emulsion solvent-evaporation, Microencapsulation, Solid dispersion, Solvent evaporation.

INTRODUCTION

Celecoxib was our drug of choice which is the first specific inhibitor of cycloxygenase-2 (COX-2). The aqueous solubility of CXB is low (3 to 7 μg/mL). The oral bioavailability of CXB is between 22% and 40%. Thus, it is important to enhance the solubility and dissolution rate of CXB to improve its overall oral bioavailability.

The term ‘solid dispersion’ has been utilized to describe a family of dosage forms whereby the drug is dispersed in a biologically inert matrix, usually with a view to enhance oral bioavailability [1].

Microencapsulation represents one of the methods by which modification of the release of the drug is achieved by delaying the time during which the drug is available and by retard ing the attack of the gastrointestinal fluids. So, it is regarded as one of the most effective tools in formulating prolonged action dosage forms [2]. Emulsion-Solvent Evaporation method has been widely used and several modifications of the technique have been successfully employed for the encapsulation of drugs.

The aim of the present paper is to study the effect of addition of different additives as hydrophilic and hydrophobic polymers on CXB by solid dispersion technique and microencapsulation, respectively.

MATERIALS AND METHODS

Materials

Methods

Preparation of Celecoxib solid dispersion by the Solvent evaporation method

The calculated amount of Celecoxib and the employed polymers (HP-β-CD, PVPK30 and Urea) in different drug-polymer ratios (1:2.5, 1:5, 1:7.5 and 1:10) are weighed and mixed together in a porcelain dish. The mixture was dissolved in the least amount of methanol as a common solvent. Then, the solvent was evaporated in oven at temperature 45°C till complete evaporation.

Preparation of Celecoxib Microcapsules

CXB microcapsules were prepared by the emulsion–solvent evaporation technique. The external phase was prepared by addition of (1%) Span 80 in light liquid paraffin. The polymers used (EC or CAB) were dissolved in acetone until clear solution was obtained. The required amount of the drug was then added to obtain the internal phase. The external phase was mixed with the internal phase to carry out the emulsification process. The acetone was allowed to evaporate by continuous stirring at 350 rpm and at room temperature using magnetic stirrer. The stirring was continued at room temperature until complete evaporation of the solvent, about 5 hours.

The production yield of CXB solid dispersions or microcapsules

The production yields of the prepared Celecoxib solid dispersions and microcapsules were studied, since it measures the actual weight of the prepared solid dispersion or microcapsules (drug + polymer). This value was calculated by dividing the actual yield of the solid dispersion or microcapsules produced over the theoretical yield and multiplied by 100.

The drug content of CXB solid dispersion

A specific amount of the prepared Celecoxib solid dispersion equivalent to 5 mg was dissolved in 50 ml methanol to produce stock solution (100 μg /ml). One ml of the stock solution was withdrawn and completed to 10 ml using methanol. The solution was assayed spectrophotometrically at 252 nm as mentioned above for calculating the Celecoxib content.

The drug content of CXB microcapsules

Weighted amount of microcapsules (20 mg) were dissolved in methanol using sonication for 5 min. The solution was then filtered through Whatmann filter paper. The absorbance was measured after suitable dilutions with methanol solutions at 252 nm by using (methanol: water mixture) as blank.

Micromeric properties of the CXB solid dispersions or microcapsules

The prepared solid dispersions or microcapsules were evaluated through determination of the following parameters:
Hausner Ratio

It is the ratio between bulk density and tapped density. It gives an idea about the flow characters of powder particles.

\[
\text{Hausner ratio} = \frac{D_b}{D_h}
\]

Compressibility percent

Compressibility is indirectly related to the relative flow rate, cohesion, and particle size of a powder. The compressibility percent of a material can be estimated as:

\[
\text{Compressibility \%} = \left(\frac{D_b - D_t}{D_b}\right) \times 100
\]

Angle of Repose

It was measured by passing the solid dispersion powder or microcapsules through a funnel which was maintained at a fixed height in all experiments. The height (h) and radius (r) of the cone were determined. The angle of repose was calculated from the following equation.

\[
\tan \theta = \frac{h}{r}
\]

In-vitro Release Study for CXB solid dispersion or microcapsules

The in-vitro release of CXB from the hard gelatin capsules filled with known amount of solid dispersions or microcapsules (equivalent to 100 mg of Celecoxib) was carried out at 37 ± 0.5 °C for 2 hr for solid dispersion and 24 hr for microcapsules, using apparatus II. The baskets were rotated at 100 rpm. The dissolution medium was 900 ml phosphate buffer pH 7.2 containing 1% tween 80. Samples of 5ml were withdrawn and replaced with fresh medium at appropriate time intervals. The drug content in the filtered samples was measured spectrophotometrically at 254nm after suitable dilutions.

RESULTS AND DISCUSSION

Preparation of Celecoxib by solid dispersion technique using solvent-evaporation method

Twelve different formulae of Celecoxib solid dispersions were prepared by solvent-evaporation technique. Table (1) contains the suggested formulae of Celecoxib. The formed solid dispersions varied in their physical properties according to the type of polymer used and the proportions of drug to polymer. Formulac containing PVP were more viscous, sticky and more difficult to be sieved than formulac containing HP-β-CD and Urea [3].

Preparation of Celecoxib by microencapsulation technique using emulsion solvent-evaporation method

In the present work the preparation was done by using two polymers (EC and CAB) with different drug: polymer ratio 1:2, 1:4 and 1:6, see table (2). All the prepared CXB microspheres were spherical in shape with smooth surface in case of EC but with rough surface with CAB except CXB-CAB (1:4) which was elongated with irregular surface.

<table>
<thead>
<tr>
<th>Table 1: Suggested formulac of CXB [prepared by solid dispersion]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>CXB-HP-β-CD (1:2.5)</td>
</tr>
<tr>
<td>CXB-HP-β-CD (1:5)</td>
</tr>
<tr>
<td>CXB-HP-β-CD (1:7.5)</td>
</tr>
<tr>
<td>CXB-HP-β-CD (1:10)</td>
</tr>
<tr>
<td>CXB-PVPk30 (1:2.5)</td>
</tr>
<tr>
<td>CXB-PVPk30 (1:5)</td>
</tr>
<tr>
<td>CXB-PVPk30 (1:7.5)</td>
</tr>
<tr>
<td>CXB-PVPk30 (1:10)</td>
</tr>
<tr>
<td>CXB-Urea (1:2.5)</td>
</tr>
<tr>
<td>CXB-Urea (1:5)</td>
</tr>
<tr>
<td>CXB-Urea (1:7.5)</td>
</tr>
<tr>
<td>CXB-Urea (1:10)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2: Suggested formulac of CXB microcapsules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>CXB – EC (1:2)</td>
</tr>
<tr>
<td>CXB – EC (1:4)</td>
</tr>
<tr>
<td>CXB – EC (1:6)</td>
</tr>
<tr>
<td>CXB – CAB (1:2)</td>
</tr>
<tr>
<td>CXB – CAB (1:4)</td>
</tr>
<tr>
<td>CXB – CAB (1:6)</td>
</tr>
</tbody>
</table>

Production yield of CXB solid dispersion

The values of the production yield of the 12 formulac of Celecoxib solid dispersion before sieving were ranging from 90 to 99.62 %. Table (3) shows the production yield of the prepared formulac. The obtained results were found to be in good agreement with the specifications of the official pharmacopoeias [4, 5].

Formula CXB-Urea (1:7.5) gave the best value for the production yield while formula CXB-PVPk30 (1:2.5) gave the worst value.

Production yield of CXB microcapsules

Table (4) shows that the values of the production yield of CXB microcapsules in the range from 95.14% to 99.5%. The increase in the coat to core ratio and the type of employed polymers used, i.e., EC and CAB, had a different effect in the production yield of CXB microcapsules [6, 7].
The values obtained for the angle of repose of the prepared CXB microcapsules, it was found that CXB-CAB (1:6) showed the best value (14.26°) while formula CXB-EC (1:4) showed the worst value (1.2).

Compressibility %

The values between 5 and 12 show excellent flowability; the values between 12 and 16 exhibit good flowability; the values between 18 and 21 show fair passable flowability; while the values between 23 and 35 exhibit poor flowability.

The best Carr’s index for CXB solid dispersion was 3.84 for CXB-PVPK30 (1:7.5), while the worst was 20 for CXB-HP-β-CD (1:2.5).

The maximum compressibility percent for the tested CXB microcapsules was 17.18% for formula CXB-EC (1:4) and the minimum one was 3.13% for formula CXB-CAB (1:6).

This was in good agreement with work done by Tiwari and his colleagues who measured the bulk and tapped densities, angle of repose, hausers ratio and compressibility index of CXB-Sorbitol solid dispersion in various proportions and found it had a good flowability [9].

In-vitro release of CXB solid dispersion and microcapsules from Hard gelatin capsule

The data obtained and calculated for this part were illustrated in figures (1-3). Pure Celecoxib yielded the slowest initial dissolution rate with only about 66.20% in 120 minutes.

The reported data for the in-vitro release of CXB-PVPK30 can be arranged in descending order as follows: CXB-PVPK30 (1:10) > CXB-PVPK30 (1:7.5) > CXB-PVPK30 (1:5) > CXB-PVPK30 (1:2.5) > CXB as shown in Fig. (1) [10]. This was in good agreement with Muralidhar who reported that the dissolution efficiency at 20 minutes found to be 62.03 and 65.14 for CXB-PVPK30 (1:2) and CXB-PVPK30 (1:4), respectively [3].

The reported data for the in-vitro release of CXB-Urea can be arranged in descending order as follows: CXB-Urea (1:7.5) > CXB-Urea (1:5) > CXB-Urea (1:2.5) > CXB as shown in Fig. (2). As reported by Punitha and his colleagues the increase in release rate of CXB-Urea (1:1, 1:3 and 1:5) was found to be 62.03 and 65.14 for CXB-PVPK30 (1:2) and CXB-PVPK30 (1:4) respectively. This may be due to impact of compression and bond formation [8]. This may lead improved solubility by reducing particle size [11].

The reported data for the in-vitro release of CXB-HP-β-CD can be arranged in descending order as follows: CXB-HP-β-CD (1:2) > CXB-HP-β-CD (1:5) > CXB-HP-β-CD (1:7.5) > CXB-HP-β-CD (1:10) > CXB as shown in Fig. (3). Mallick and his colleagues reported that the highest potency of the carriers was due to beta cyclodextrin in enhancing the dissolution rate of Nalidixic acid [12].

Fig. 1: The effect of PVP K30 on the in-vitro release of CXB solid dispersions using hard gelatin capsule (pure CXB + formulae 1-4)
Fig. 2: The effect of Urea on the in-vitro release of CXB solid dispersions using hard gelatin capsule (pure CXB + formulae 5-8)

Fig. 3: The effect of HP-β-CD on the in-vitro release of CXB solid dispersions using hard gelatin capsule (pure CXB + formulae 9-12)

Fig. 4: In-vitro release of drug from CXB-CAB microcapsules

Fig. 4 (and 5) showed the order for the in-vitro release of CXB-EC and CXB-CAB. As the coat to core ratio increased from 1:2 to 1:6 in case of EC and CAB, the in-vitro release of the drug decreased dramatically [6]. CXB formulae can be arranged according to the in-vitro release of CXB microcapsules from hard gelatin capsules as follow: CXB-EC (1:2) > CXB-EC (1:4) > CXB-CAB (1:2) > CXB-EC (1:6) > CXB-CAB (1:4) > CXB-CAB (1:6). The results were in good agreement with the in-vitro release specifications of sustained released pharmaceutical preparations [13].
CONCLUSION

This present study showed that when Celecoxib was dispersed in a suitable water-soluble carrier such as HP-β-CD, PVPK30 and Urea its dissolution was enhanced compared with pure drug. While when Celecoxib was combined with hydrophobic polymers such as EC and CAB sustained release is obtained. The best formula for the solid dispersion after in vitro release test was CXB-HP-β-CD (1:10), but for the microcapsules was CXB-EC (1:2).

REFERENCE

