EFFECT OF ISOLATED LUPONE CONSTITUENT OF PORTULACA OLERacea ON REPRODUCTIVE PARAMETERS IN MALE RATS

K.O. OYEDEJI1, A.F. BOLARINWA2, I.A. OLADOSU3

1Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria, 2Department of Physiology, College of Medicine, University of Ibadan, Ibadan, Nigeria, 3Department of Chemistry, Faculty of Science, University of Ibadan, Ibadan, Nigeria.

Received: 02 Apr 2013, Revised and Accepted: 20 Apr 2013

ABSTRACT

Objective: This study was designed to evaluate the reproductive effect of isolated lupone constituent of Portulaca oleracea on reproductive parameters in male albino rats.

Methods: The isolated compound was administered on daily basis for 25 days at doses of 0.50 mg/kg and 0.75 mg/kg and blood samples were collected for hormonal assay, semen analysis was also carried out. Data were analysed using ANOVA at p<0.05.

Results: Treatment of rats with both doses caused decrease in testosterone levels, sperm motility and sperm count as well as significant (p<0.05) increase in the percentage of abnormal sperm cells relative to their respective controls.

Conclusion: These findings on the reproductive parameters suggests that isolated lupone constituent of Portulaca oleracea has deleterious effect on reproductive functions in male albino rats.

Keywords: Lupone, Sperm count, Sperm motility, Testosterone, Albino rats.

INTRODUCTION

Lupone is a triterpene. Triterpenes are a widespread group of natural compounds with considerable practical significance which are produced by arrangement of squalene epoxide in chair-chair-boat arrangement followed by condensation [1]. Triterpenes are important structural components of plant membranes [1] and they are natural components of human diets [2].

Triterpenes have been reported to have protective effects against benzo[a]pyrene induced clastogenicity in mouse bone marrow cells [3]. Triterpenes have been reported to possess anti-angiogenic [4], anti-inflammatory [5], cardio-protective [6] and anti-cancer [7] effects.

However, due to paucity of information from literature on the effect of triterpenes on reproductive parameters in male albino rats, this study therefore aims at investigating the effect of isolated lupone constituent of Portulaca oleracea on these aforementioned parameters.

MATERIALS AND METHODS

Experimental Animals

Adult male albino rats weighing between 150 g and 250 g bred in the Pre-clinical Animal House of the College of Medicine, University of Ibadan were used. They were housed under standard laboratory conditions with a 12 hours daylight cycle and had free access to feed and water; and were acclimatized for two weeks to laboratory conditions before the commencement of the experiments. All experiments were carried out in compliance with the recommendations of Helsinki’s declaration on guiding principles on care and use of animals.

Plant Material

Fresh specimens of Portulaca oleracea were collected from the Botanical Garden of the Forestry Research Institute of Nigeria, Jericho, Ibadan, and was authenticated in the above named institute where a voucher specimen (No FHI 108334) was deposited.

Extraction, Fractionation and Isolation of Constituents of Portulaca oleracea

About 32 kg of air-dried specimen of Portulaca oleracea was cold-extracted in methanol for 72 hours. The mixture was filtered using a wire-gauze and a sieve with tiny pores (0.25 mm) and concentrated at room temperature by exposing the extract for six days. The resulting solution was then placed in the oven at a reduced temperature (50 °C).

The methanolic extract was then preabsorbed with silical gel and placed in the oven at a reduced temperature (50 °C) overnight and then subjected to open column chromatography on silical gel (F254, 50-200 mesh, E. Merck) for fractionation. The solvents (mobile phases) were hexane (non-polar), ethylacetate (partially polar) and methanol (polar). The gradients of the mobile phases involved hexane with an increasing percentage of ethylacetate (hexane/ethylacetate mixture) and then ethylacetate with an increasing percentage of methanol (ethylacetate/methanol mixture) as shown in table:

<table>
<thead>
<tr>
<th>Hexane</th>
<th>Ethylacetate</th>
<th>Methanol</th>
</tr>
</thead>
<tbody>
<tr>
<td>0% (0 mL)</td>
<td>:0% (0 mL)</td>
<td>:0% (0 mL)</td>
</tr>
<tr>
<td>10% (5 mL)</td>
<td>:10% (5 mL)</td>
<td>:10% (5 mL)</td>
</tr>
<tr>
<td>20% (10 mL)</td>
<td>:20% (10 mL)</td>
<td>:20% (10 mL)</td>
</tr>
<tr>
<td>30% (15 mL)</td>
<td>:30% (15 mL)</td>
<td>:30% (15 mL)</td>
</tr>
<tr>
<td>40% (20 mL)</td>
<td>:40% (20 mL)</td>
<td>:40% (20 mL)</td>
</tr>
<tr>
<td>50% (25 mL)</td>
<td>:50% (25 mL)</td>
<td>:50% (25 mL)</td>
</tr>
<tr>
<td>60% (30 mL)</td>
<td>:60% (30 mL)</td>
<td>:60% (30 mL)</td>
</tr>
<tr>
<td>70% (35 mL)</td>
<td>:70% (35 mL)</td>
<td>:70% (35 mL)</td>
</tr>
<tr>
<td>80% (40 mL)</td>
<td>:80% (40 mL)</td>
<td>:80% (40 mL)</td>
</tr>
<tr>
<td>90% (45 mL)</td>
<td>:90% (45 mL)</td>
<td>:90% (45 mL)</td>
</tr>
<tr>
<td>100% (50 mL)</td>
<td>:100% (50 mL)</td>
<td>:100% (50 mL)</td>
</tr>
</tbody>
</table>

Table: Twenty-one fractions were obtained after the column chromatographic procedure.
Thin Layer Chromatography (TLC)
The 21 fractions were spotted on precoted plates of silica gel GF 254 (20 x 20, 0.5 mm thick; E. Merck) using capillary tubes. The spotted TLC plates were developed in a tank that contained a mixture of ethylacetate/methanol (9:1) as the mobile phases.
The TLC plates were then examined under the ultraviolet (UV) light at a wavelength of 365 nm and the well-defined spots of the components were then revealed by the UV light. Fractions with similar relative fronts or retention or retardation factors (Rf value) were then pooled or bulked together, this then reduced the number of fractions to five (fractions 1, 2, 3, 4, 5). $R_f = \frac{\text{distance compound has moved from origin}}{\text{distance of solvent front from origin}}$
The TLC analysis of all the fractions indicated fraction 2 as the fraction that contains many components.
This fraction 2 was further subjected to open column chromatography and eluted using hexane and chloroform (Hexane: Chloroform 50:50) as mobile phases to produce another 46 fractions (Isolated compounds). Isolated compound 25 upon standing overnight gave regular – shaped crystals which were separately washed with hexane and sent for UV, IR and NMR analyses.

Spectroscopy
The quantitative estimation of the isolated compound was obtained by the ultraviolet (UV) spectrophotometry. The infrared and the nuclear magnetic resonance (NMR) analyses were to identify the nature and to obtain the formulae of the isolated compounds.

(i) Ultraviolet (UV) analysis
The UV spectra of the isolated compound was recorded in Chloroform in Genysis 32010 (thermoelectron coupling) spectrophotometer at the Central Research Laboratory, Ladoke Akintola University of Technology, Ogbomoso.

(ii) Infrared (IR) analysis
The IR spectra of the isolated compound was recorded in Nujol on Spectrum II BX FTIR (Perkin Elmer) spectrophotometer at the Central Research Laboratory, University of Benin.

(iii) Nuclear Magnetic Resonance (NMR) analysis
The 1H-NMR spectra was recorded at 200MHz in CDCl3 on a Varian-Mercury nuclear magnetic resonance spectrophotometer using tetramethylsilane (TSM) as an internal standard at the Central Science Laboratory, Obafemi Awolowo University, Ille-Ife.
The 1H-NMR shifts were calculated for the isolated compound using the Advanced Chemistry Development (ACD) software for further confirmation of the structure of the isolated compound.

Acute Toxicity Test of the Isolated Compound
The acute toxicity test of the isolated compound of *Portulaca oleracea* was evaluated in albino mice as described by [8]. Fifteen adult male mice weighing between 20-22 g were divided into five mice per group for the isolate. Three doses of the isolate: 0.5 mg/kg BW, 2.5 mg/kg BW and 5 mg/kg BW were orally given to the animals. The control group mice (n=5) received 0.2 ml of distilled water. The animals were observed for seven days for behavioural changes and mortality.

Experimental Design
Fifteen animals were randomly divided into three groups with each group consisting of five rats. The three groups were subjected to the following oral daily treatments for 25 days:
- Group I rats received 0.50 mg/kg BW of lupone
- Group II rats received 0.75 mg/kg BW of lupone
- Group III rats received 0.50 ml of distilled water as the control group.

Collection of Blood Samples
Blood samples were collected through the medial canthus into EDTA bottles for hormonal assay.

Hormonal Assay
Plasma samples were assayed for testosterone using the enzyme-linked immunosorbent assay (ELISA) technique using the Randox kit.

Semen Collection
The testes were removed along with the epididymides. The caudal epididymides were separated from the testes, blotted with filter papers and lacerated to collect the semen.

Semen Analysis
Progressive Sperm Motility: This was done immediately after the semen collection. Semen was squeezed from the caudal epididymis onto a pre-warmed microscope slide (27 °C) and two drops of warm saline were added. The slide was then covered with a warm cover slip and examined under the microscope using x400 magnification. Ten fields of the microscope were randomly selected and the sperm motility of 10 sperms was assessed on each field. Therefore, the motility of 100 sperms was assessed randomly. Sperms were labelled as motile, sluggish, or immotile. The percentage of motile sperms was defined as the number of motile sperms divided by the total number of counted sperms (ie. 100) [9].

Sperm viability (Life/dead ratio): This was done by adding two drops of warm Eosin/Nigrosin stain to the semen on a pre-warmed slide, a uniform smear was made and dried with air; the stained slide was immediately examined under the microscope using x400 magnification. The live sperm cells were white while the dead sperm cells absorbed the stain. The stained and unstained sperm were counted and the percentage was calculated [10].

Sperm morphology: This was done by adding two drops of warm Wall’s and Ewas stain (Eosin/Nigrosin stain can also be used) to the semen on a pre-warmed slide, a uniform smear was then made and air-dried; the stained slide was immediately examined under the microscope using x400 magnification. The live sperm cells were then identified using the microscope. The number of abnormal spermatogonia were evaluated from the total number of spermatogonia in the five fields; the number of abnormal spermatogonia were expressed as a percentage of the total number of spermatogonia.

Sperm count: This was done by removing the caudal epididymis from the right testes and blotted with filter paper. The caudal epididymis was immersed in 5ml formol-saline in a graduated test-tube and the volume of fluid displaced was taken as the volume of the epididymis. The caudal epididymis and the 5ml formol-saline were then poured into a mortar and homogenized into a suspension from which the sperm count was carried out using the improved Neubauer haemocytometer under the microscope.

Statistical Analysis
The mean and standard error of mean (S.E.M.) were calculated for all values. Comparison between the control and experimental groups was done using one-way analysis of variance (ANOVA) with Duncan’s Multiple Range Test. Differences were considered statistically significant at p<0.05.

RESULTS

(i) Acute Toxicity
No mortality and changes in behaviour were observed in all the treated and control groups. Hence lower doses of the isolated compound were used for this study.

(ii) Spectral Analyses
The characterized name of compound 25 that was sent for spectral analyses is lupone. The chemical identity and the structural
elucidation of this compound were obtained based on the spectroscopical analyses.

The UV spectrum of compound 25 (Figure 1) shows absorbance at 205 nm, 250 nm, 262 nm and 352 nm which is indicative of the presence of homoannular nucleus. The IR spectrum of compound 25 (Figure 2) shows signals at 2848.18 cm\(^{-1}\) corresponding to C-H stretching vibrations, 1711.46 cm\(^{-1}\) for C=O stretching vibrations, 1461.43 cm\(^{-1}\) for C-H deformations, 1376.15 cm\(^{-1}\) for C-H deformations, 1262.14 cm\(^{-1}\) for C-O stretching vibrations and 1020.90 cm\(^{-1}\) for C=O stretching vibrations. Further justification to the structure of compound 25 (Figure 3) was obtained from the \(^1\)H-NMR spectrum of compound 25. Details of the \(^1\)H-NMR of compound 25 is presented in Table 1.

All these facts points to the proposed structure as lupone.

Table 1: \(^1\)H-NMR chemical shift (\(\delta\)) data of compound 25 (Lupone)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>(\delta) H (ppm)</th>
<th>Multiplicity</th>
<th>J (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.90</td>
<td>Triplet</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>2.04</td>
<td>Multiplet</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>2.39</td>
<td>Triplet</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>1.68</td>
<td>Quartet</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>1.60</td>
<td>Singlet</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>1.60</td>
<td>Singlet</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>1.68</td>
<td>Singlet</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>1.68</td>
<td>Singlet</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>1.58</td>
<td>Singlet</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>1.58</td>
<td>Singlet</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>1.12</td>
<td>Singlet</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>1.12</td>
<td>Singlet</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>1.58</td>
<td>Singlet</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>1.58</td>
<td>Singlet</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>0.90</td>
<td>Triplet</td>
<td>20</td>
</tr>
<tr>
<td>16</td>
<td>0.90</td>
<td>Triplet</td>
<td>20</td>
</tr>
<tr>
<td>17</td>
<td>1.58</td>
<td>Singlet</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>1.58</td>
<td>Singlet</td>
<td>-</td>
</tr>
<tr>
<td>19</td>
<td>1.58</td>
<td>Singlet</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>1.12</td>
<td>Singlet</td>
<td>-</td>
</tr>
<tr>
<td>21</td>
<td>1.68</td>
<td>Singlet</td>
<td>-</td>
</tr>
<tr>
<td>22</td>
<td>0.90</td>
<td>Triplet</td>
<td>20</td>
</tr>
<tr>
<td>23</td>
<td>1.12</td>
<td>Singlet</td>
<td>-</td>
</tr>
<tr>
<td>24</td>
<td>0.90</td>
<td>Triplet</td>
<td>20</td>
</tr>
<tr>
<td>25</td>
<td>2.39</td>
<td>Triplet</td>
<td>20</td>
</tr>
</tbody>
</table>

Fig. 1: UV spectrum of compound 25 (lupone)
The proposed structure of lupone is shown below
(iii) Effect on Hormonal Levels

The effect of lupone at doses of 0.50 mg/kg BW and 0.75 mg/kg BW on testosterone levels of albino rats after treatment of rats for 25 days is shown in Figure 4.

Treatment of rats with 0.50 mg/kg and 0.75 mg/kg BW of tetracyclic steroid caused significant (p<0.05) decrease in the testosterone levels relative to the control.

(iv) Effect on Sperm Characteristics

The effect of lupone at various doses on sperm characteristics and sperm counts of albino rats after treatment of rats for 25 days are shown respectively in the spermograms of Figures 5 and 6.

Treatment of rats with 0.50 mg/kg BW of lupone caused significant (p<0.05) decrease in sperm motility relative to the control, while 0.75 mg/kg BW of lupone caused no significant (p>0.05) change in sperm motility relative to the control. Treatment of rats with 0.50 mg/kg BW and 0.75 mg/kg BW of lupone caused significant (p<0.05) increase in the percentage of abnormal sperm cells relative to the control. Treatment of rats with 0.50 mg/kg BW of lupone caused significant (p<0.05) decrease in sperm count relative to the control, while 0.75 mg/kg BW of lupone caused non-significant (p>0.05) change in sperm count relative to the control.
DISCUSSION

It was observed that the highest dose of the isolated compound caused vis mortality or behavioral changes in all the treated animals which indicates that the isolate has wide safety margins.

The isolate (lupone) caused significant decrease in testosterone levels. Similar report was given by [11] and [22] in rats treated with Aegle marmelos and Carica papaya extracts respectively. This decrease in testosterone levels could indicate that the extract inhibit the mechanism intervening in the process of hormone synthesis in the Leydig cells.

The andrological results also show that treatment of rats for 30 days with lupone caused significant decrease in sperm motility. Similar report was given by [13] in rats treated with Sarcotemna acidum extract. This suggests that the extract was able to permeate the blood-testis barrier with a resultant alteration in the microenvironment of the seminiferous tubules, since it has been reported that the decrease in sperm motility caused by chemical agents was due to their ability to permeate the blood-testis barrier [14] and thus, creating a different microenvironment in the inner part of the wall of the seminiferous tubules from that in the outer part [15].

There was a statistically non-significant decrease in sperm viability and a significant increase in the percentage of morphologically abnormal sperm cells induced after treatment of rats with lupone. This could be due to the ability of lupone to either interfere with the spermatogenic processes in the seminiferous tubules, epididymal functions or activities of testosterone on hypothalamic release factor and anterior pituitary secretion of gonadotropins which may result in alteration of spermatogenesis ([16]; [17]). Contrary result was reported by [18] in Ficus carica extract treated rats.

Sperm count is considered to be an important parameter with which to assess the effects of chemicals on spermatogenesis [19]. Spermatogenesis is influenced by the hypothalamic-adenohypophyseal – Leydig cell system releasing gonadotrophin releasing hormone, leuktinizing hormone and androgen. This implies that the decrease in sperm count caused by lupone in the treated rats might be as a result of decrease in plasma level of testosterone, because this hormone has been reported to be important in the initiation and maintenance of spermatogenesis [20]. Similar report was given by [21] in Terminalia chebula extract treated rats.

In conclusion, this study has shown that isolated lupone constituent of Portulaca oleracea could have some toxic potentials on the reproductive functions of male albino rats. However, its effect on human reproductive functions are unknown; nevertheless, considering these findings in animal model, it is recommended that men with infertility or reproductive problems should abstain from taking lupone during the treatment period.

REFERENCES

