SEPARATION OF FLAVONOIDS FROM ALCOHOLIC EXTRACT OF SALVADORA PERSICA BY HPLC

MANU ARORA1*, ANEES A SIDDIQUI2, SARVESHA PALIWAL3

1[1,3]Department of Pharmacy, Banasthali University, P.O. Banasthali Vidyapith, Distt. Tonk, Rajasthan, 304022, 2Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi, 110062 India. Email: manu_cognosy@yahoo.co.in.

Received: 14 Aug 2013, Revised and Accepted: 05 Oct 2013

ABSTRACT

Objective: Salvadora persica is commonly known as toothbrush tree which contains numbers of flavonoids. The objective of the research work was separation and identification of flavonoids. Methods: These flavonoids were analyzed by the HPLC method from the alcoholic extract of stems of Salvadora persica. Mobile phase was composed of acetonitrile:water. Isolation of these flavonoids was done by using RP-18 column with UV variable wavelength detector (set at 254 nm). Chromatograms of standards was compared with the chemical compounds present in sample. Results: It revealed the presence of rutin, kaempferol, quercetin and quercetin in the crude extract. Among all the flavonoids rutin was present in higher concentration. Quercetin was one of the flavonoid which was detected first time in alcoholic extract of stem of the plant.

Keywords: Tooth brush tree, Phytochemistry, Salvadora persica, Kharajal.

INTRODUCTION

Kharajal is one of the traditional remedy used as anti-fungal[1], hypoglycaemic[2], anti-microbial[3], anti-bacterial[4], anti-plasmodial[5], anti-spasmodial[6], anti-mycoxic[7], oral hygiene tool[8] and also used in hepatic disorders[9]. These therapeutic activities of kharajal are due to the presence of different secondary plant metabolites like amino acids[10], volatile oil[11] and benzylamides[12]. It also contains sterids and steroidal glycoside[13].

Salvadora persica also possess the flavonoids and flavonoid glycosides like Kaempferol, Quercetin, Kaempferol-3-O-rhamnopyranoside, iso rhamnetin-3-O-robinobioside, kaempferol-3-O-robinobioside, narscin, kaempferol-3-O-rutinoside, isorhamnetin-3-O-β-galactoside, astragalin,isorhamnetin-3-O-β-D-glucoside,isorhamnetin-3-(2,6-dihydroxypropyl)-β-D-glucopyranoside, Mauritanian, isorhamnetin-3-O-(2-Glcrhamnosylrutinoside) and kaempferol-3-O-(2-Gk-rhamnosylrutinoside)[15].

MATERIALS AND METHODS

Plant material

The fresh stems were collected in the month of July-August 2007 from Agricultural University Campus, Bikaner and authenticated by Dr. Shekhar Bhargava, Head of the Botany Department, Rajasthan University. After the collection, stems dried in shade at temperature 0 °C until exhaustion. The alcoholic extract was evaporated by Rotatory evaporator at about 50 °C.

Preparation of extract

100 g of the air dried coarse powdered defatted plant material was percolated with alcohol (95%) for 16 hrs. and repeated three times until exhaustion. The alcoholic extract was evaporated by Rotatory evaporator at about 50 °C.

Standards and chemicals

HPLC-gradient grade methanol and other chemicals (acetonitrile, trifluoroacetic acid) of analytical – reagent grade were purchased from Merck. The authentic standards of the studied flavonoids were taken from Indian Institute of Integrative Medicine and Research, Jammu.

Conditions

HPLC analysis was carried out on injection valve with a 25 μl, a UV variable wavelength detector (set at 254 nm) sensitivity was 0.001, 5 μm RP-18 column (30°C). Mobile phase consisted of acetonitrile water (containing 5% TFA each). The analytes were eluted gradentially at a flow rate of 1.0 ml/min. Chromatograms were generated on software. The HPLC instrument was operated at room temperature (23 ± 2°C). Each diluted extract 10 μl was injected in to the HPLC three times and the average peak area was reported and used for quantification.

Preparation of standards

1.2 mg of each standard (Rutin, Kaempferol, Quercetin and Quercetrin) was taken in 5ml of methanol (HPLC grade). From which 5, 10, 15, 20, 25μl were injected in HPLC system for making standard curve.

Preparation of sample

10 mg of dry 50% alcoholic extract was dissolved in 10 ml extraction solvent (HPLC grade) to get 1 mg/ml solution, filtered through 0.45 μm Millipore and injected to Waters HPLC system.

Calibration plots

Calibration plots were prepared in order to find out the range of marker concentration, which shows a linear relation with respect to response of analytical technique. Once this range of response was established, concentrations of all test samples were so adjusted as to give the established linear range.

Quantification

The compounds exhibited linear responses in the calibration curves, which were prepared by using the multipoint calibration method. Samples and standards as such and after mixing were injected in different amounts. Calibration curves were plotted for Rutin, Quercetin, Kaempferol, and Quercetin.

RESULTS AND DISCUSSION

The RP-HPLC behavior of the flavonoids on the reversed phase column in kharajal was tested sequentially varying the proportion of the Acetonitrile-water elution mixture. The separation was achieved by modifying the mobile phase with a small amount of trifluoroacetic acid. HPLC fingerprints of alcoholic extract of Salvadora persica given in graph 1 and their retention times & amounts were calculated as shown in Table 1.

Results of HPLC analysis of Salvadora persica alcoholic extract (Figure-1), at 254 nm, had shown presence of various constituents as evidenced by the chromatogram obtained at various retention times (17.702, 24.223, 36.171, 39.650) are the constituents found in Salvadora persica. In the compound having retention time 24.223 was the new constituent in alcoholic stem extract. Kaempferol had shown the highest retention time (39.650) among all.
Graph 1: Shown the retention time of compounds present in the sample extract.

Table 1: Retention time & amount of compounds present in sample extract

<table>
<thead>
<tr>
<th>Peak name</th>
<th>Retention time</th>
<th>Area (μv*sec)</th>
<th>% age Area</th>
<th>Height</th>
<th>Amount (ng)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUTIN</td>
<td>17.702</td>
<td>1668430</td>
<td>13.11</td>
<td>91835</td>
<td>1390.814</td>
</tr>
<tr>
<td>QUERCETIN</td>
<td>24.223</td>
<td>69941</td>
<td>0.55</td>
<td>3569</td>
<td>13.981</td>
</tr>
<tr>
<td>QUERCETIN</td>
<td>36.171</td>
<td>4697</td>
<td>0.04</td>
<td>-</td>
<td>0.939</td>
</tr>
<tr>
<td>KAEMPFEROL</td>
<td>39.650</td>
<td>4247</td>
<td>0.03</td>
<td>251</td>
<td>1.969</td>
</tr>
</tbody>
</table>

These constituents detected were present in (1390.814, 13.981, 0.939 and 1.969) ng amounts. Out of these constituents rutin was present in higher amount. Although quercetin was present in very less amount but that was not reported earlier. The highest peak of rutin was shown on 91835 in the chromatogram of alcoholic extract of *Salvadora persica* stem. Other flavonoids namely quercetin, quercetin and kaempferol showed the height of peak at 3569, -497, 251 respectively.

The retention time of standards rutin, quercetin, quercetin and kaempferol appeared at 17.644, 24.471, 36.193, 39.533 as shown in Graph 2 and amount of these standards were calculated in ng and tabulated in table 2.

Fig. 2: Shown the retention time of standards

Table 2: Retention Time & amount calculated of all standards

<table>
<thead>
<tr>
<th>Peak name</th>
<th>Retention time</th>
<th>Area (μv*sec)</th>
<th>% age Area</th>
<th>Height</th>
<th>Amount (ng)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUTIN</td>
<td>17.644</td>
<td>2329005</td>
<td>13.00</td>
<td>14.3366</td>
<td>1875</td>
</tr>
<tr>
<td>QUERCETIN</td>
<td>24.471</td>
<td>7566862</td>
<td>42.25</td>
<td>445840</td>
<td>1500</td>
</tr>
<tr>
<td>QUERCETIN</td>
<td>36.193</td>
<td>5500590</td>
<td>30.71</td>
<td>374129</td>
<td>1500</td>
</tr>
<tr>
<td>KAEMPFEROL</td>
<td>39.533</td>
<td>2512380</td>
<td>14.03</td>
<td>192016</td>
<td>1500</td>
</tr>
</tbody>
</table>

Standard rutin was present in higher concentration among all standards. Calibration curves of standards were plotted and compared with the sample.
The results obtained by this method revealed the presence of four flavonoids Rutin, Quercetrin, Quercetin and Kaempferol. Quercetrin was new identified compound.

CONCLUSION

Based upon the HPLC fingerprints of alcoholic extract of Salvadora persica, it can be concluded that Quercetin is the flavonoid which was not reported earlier. Rutin was present in higher concentration as compared to quercetin. All these flavonoids are responsible for therapeutic activity of Salvadora persica which is commonly known as toothbrush tree. Further research can be done on isolation of all the flavonoids.

ACKNOWLEDGMENTS

The authors are thankful to Indian Institute of Integrated medicine and Research, Jammu for providing necessary facilities for carrying out the research work.

REFERENCES

2. Yadav JP, Saini S, Kala AN, Dangi AS Hypoglycemic and hypolipidemic activity of ethanolic extract of Salvadora oleoides

Fig. 1: New novel compound identified by high performance thin layer chromatography


