IN-SITU INJECTABLE THERMOSENSITIVE GEL BASED ON POLOXAMER AS A NEW CARRIER FOR TAMOXIFEN CITRATE

DALIA S SHAKER1*, MOHAMED K. Ghorab1, ANKE KLINGNER2, MOHAMED S. TEIAMA1

1Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, 2Department of Physics, Faculty of Engineering, German University, Cairo, Egypt. Email: dalia_shaker@hotmail.com

Received: 12 Sep 2013, Revised and Accepted: 13 Oct 2013

Objective: To evaluate poloxamer (Pl) based in-situ injectable thermosensitive gel of Tamoxifen citrate (TMC) compared to orally administered TMC regarding retention in different tissues. Methods: The inclusion complexes of TMC with β-cyclodextrin (β-CD), hydroxypropyl β-cyclodextrin (HP-β-CD) and sulfobutyl-7-ether β-cyclodextrin (SBE-β-CD) were prepared by solvent evaporation method and evaluated for drug-excipient compatibility tests as well as in-vitro release studies. Poloxamer analogs were mixed in different ratios and evaluated for gelation temperature and rheological properties. Finally, the optimized thermosensitive hydrogel formula was evaluated for in-vitro drug release as well as in-vivo drug retention in rat tissues, plasma and liver. Results: TMC/SBE-β-CD complex showed the highest drug release rate. The optimum concentrations of poloxamer analogs for the in situ gel-forming delivery system were 20% (w/v) Poloxamer 407 (F127) and 15% (w/v) Poloxamer 188 (F68) that exhibited sol→gel transition at 36.5°C ± 0.5°C. TMC/SBE-β-CD complex incorporated in the optimized thermosensitive gel base exhibited elevated drug level in cancer tissues and low level in plasma and liver compared to oral TMC suspension. Conclusion: The optimized formula of TMC/SBE-β-CD hydrogel could contribute in elevating drug level at targeted tissues and improving drug anticancer activity.

Keywords: SBE-Cyclodextrin, Inclusion complex, Injectable hydrogel.

INTRODUCTION
Tamoxifen citrate (TMC) is a nonsteroidal anti-estrogen frequently considered the drug of choice for the treatment of breast cancer as it has a relatively low toxicity than most chemotherapeutic agents such as alkylating agents, anti-metabolites and anti-tumor antibiotics [1-4]. However, the drug is a highly lipophilic and susceptible to first pass metabolism and P-glycoprotein (P-gp) pump efflux in the liver and intestine when orally administered [5]. One of the many approaches adopted to enhance solubility and bioavailability of poorly-water soluble drugs is complexation with cyclodextrin [6-8]. This complexation involves entrapment of the drug hydrophobic moiety in the cyclodextrin (CD) cavity that has similar hydrophobic nature as the drug. The outer surface of CD is characterized by being hydrophilic; thus enhancing aqueous solubility of the drug [9].

Although solubility enhancement of TMC may improve its bioavailability from oral dosage forms, the drug side effects cannot be reduced. Therefore, there was an urgent need for a new dosage form that can reduce TMC side effects through localizing its presence at cancerous tissue. The use of in-situ injectable poloxamer-based thermosensitive gel was expected to help reaching this goal. In situ gel formation occurs due to one or combination of different stimuli such as physiological stimuli e.g., temperature and pH [10], physical changes in biomaterials e.g., solvent exchange, swelling, and self-assembly [11-13], and chemical reactions e.g., enzymatic, chemical and photo-initiated polymerization [14, 15] or based on UV-irradiation [16]. Temperature modulation system has been studied as an approach to reduce TMC side effects. It relies on the use of systems containing thermosensitive materials such as, polysaccharides (e.g., cellulose derivatives, xyloglycan and Chitosan) and poloxamers [16]. Aqueous solutions of poloxamer 407 exhibited a thermo reversible property: a perfectly reversible thermogelling phenomenon characterized by a sol-gel transition temperature (Tgel→sol). Below the Tgel→sol, the sample behaves as a fluid (sol) whereas above that temperature it changes to semi-solid gel [17]. Poloxamer is a copolymer of hydrophobic and hydrophilic blocks of propylene oxide (PO) and ethylene oxide (EO) blocks [18]. As temperature increases above Tgel→sol, the PO blocks dehydrate causing the copolymer molecules to aggregate into spherical micelles whereas the PO blocks oriented towards the core and the EO chains arranged in the outer shell [19, 20].

The main objective of this study was to minimize the toxicity of TMC by localizing its presence at cancerous tissue through the use of in-situ injectable poloxamer-based thermosensitive gel. In order to achieve our goal, the solubility and release rate of the lipophilic drug were enhanced through SBE-β-CD complexation. The inclusion complex was incorporated in thermosensitive gel carrier and evaluated for drug retention in tissues, plasma and liver.

MATERIALS AND METHODS

Materials
Tamoxifen citrate was kindly supplied by Amriya Company for Pharmaceuticals Industries, Egypt. β-cyclodextrin (βCD) and hydroxypropyl β-cyclodextrin (HP-βCD) were purchased from Sigma Aldrich, USA; whereas sulfobutyl ether-7-β-cyclodextrin sodium salt (SBE-βCD) commercially known as Captisol®, was kindly supplied from Cydex Inc, USA. Poloxamer 407 and poloxamer 188 were purchased from Sigma Aldrich, Germany under the commercial names Pluronic F127® (F127) Pluronic F68® (F68), respectively. Methanol and acetonitrile of HPLC grade were also purchased from Sigma-Aldrich, Inc., Germany. Water for HPLC was obtained from ADWIC, Egypt whereas diisodium hydrogen phosphate, sodium dihydrogen phosphate and sodium chloride were purchased from EL-Gomhoria Company, Egypt.

Preparation of TMC-CD inclusion complexes and physical mixtures

Binary physical blends in the molar ratio of 1:2 TMC:CDs were prepared by mixing 3.54 mM TMC with 7.1 mM of CDs (equivalent to 402 mg, 489 mg and 767 mg of β-CD, HP-β-CD SBE-β-CD, respectively) in a ceramic mortar with pestle for 30 minutes. The produced mixtures were then passed through sieve no 8 to ensure complete homogeneity. The 1:2 drug/carrier ratio was obtained from phase solubility diagrams (data not shown).

The solvent evaporation method was employed for preparing drug complexes where an equivalent weight of 7.1 mg of the CDs where dissolved in glass beaker containing 50 ml distilled water with the aid of magnetic stirrer[21, 22]. A weight of 100 mg TMC (equivalent to 3.54 mM) was added to the CD solutions. Solutions were left on the stirrer (24-48 hr) till clear solutions were obtained. The solutions were kept at 40°C in an incubator till complete evaporation of solvent and dry complexes were obtained.
Preparation of TMC-CD complexes loaded thermosensitive sol-gel systems

Incorporation of the selected TMC-CD complex system (TMC/SBE-β-CD) in a thermosensitive gel base was performed according to the cold method described in literature [23]. In brief, a series of solutions of F127 (20 w/v %) with increasing concentration of F68 (5, 10 and 15 w/v %) were prepared by slow addition of poloxamers to distilled water which was then stirred with magnetic stirrer and allowed to dissolve overnight at 37°C. Tamoxifen citrate (10 mg) was initially dissolved in lowest amount of methanol before being added to the cold F127/F68 solutions with gentle mixing. Thermosensitive sol-gel systems containing TMC/SBE-β-CD complex were prepared in the same way but with the complex added directly to the poloxamers mixture without being initially dissolved in methanol.

Characterization of TMC-CD complexes

Fourier Transform Infrared (FTIR) spectroscopy

Spectra of samples of TMC, CDs, their physical mixtures and complexes were characterized using Shimadzu infrared spectrophotometer (FTIR Shimadzu 8240FTS, Lab Wrench). Discs of mixtures of the samples with IR grade KBr in the ratio of (9:1, KBr: samples) were prepared by hydraulic press under 5:5 metric ton of pressure. The spectra were collected within the scanning range of 400 to 4000 cm⁻¹ and with a resolution of 4 cm⁻¹ using a mercury cadmium Telluride (MCT) detector.

Differential scanning calorimetry (DSC):

Accurately weighed samples (7-8 mg) of TMC, CDs, their physical mixtures and complexes were analyzed using Shimadzu DSC (DSC-50; Shimadzu Corporation, Japan). Temperature of samples was elevated from room temperature (20-22°C) to 200°C, at rate of 50°C/minute under flow of nitrogen at rate of 30 ml /minutes to avoid sample oxidation.

Characterization of thermosensitive sol-gel systems

Measurement of gelation temperature:

A small transparent beaker containing a few milliliters of thermosensitive system and a magnetic bar was placed in low-temperature (4°C) adjusted thermostat controlled water bath. An Omron digital thermometer (Model: ECO Temp II, Omron Healthcare, INC., Lake Forest, IL) was immersed in the solution which was heated gradually with continuous stirring of 30 rpm. When the magnetic bar stopped moving due to gelation, the temperature displayed on the digital thermometer was determined as gelation temperature [23, 24].

Rheological behavior measurements:

A Piezoelectric axial vibrator (PAV) was used to determine the frequency dependent viscoelasticity of the thermosensitive sol-gel formulations below and above the gelation point at 18°C and 37°C, respectively. Determination of viscoelastic behavior of preparations was carried out over a wide range of frequency (1-4000 Hz) [25]. Samples were carefully applied between the stainless steel plates with a spatula to ensure no formulation shearing did occur [26]. The gap between the plates was varied between 9 μm to 89 μm by spacers. The vibration actuated by Piezoelements had amplitude of 50 μm and with a resolution of 4 μm using a mercury cadmium Telluride (MCT) detector.

In-vitro TMC release studies from thermosensitive gels

In-vitro release of drug from TMC/SBE-β-CD complex embedded in thermo-sensitive gel was evaluated in phosphate buffer saline (PBS, pH 7.4). Appropriate amount of optimized gel base formula containing 1mg TMC or its equivalent weight of selected inclusion complex, were placed in two open ended tube (1 cm in diameter) with cellulose membrane (Spectra/Por®, molecular porous membrane tubing No.2, Mwt cut off 12-14000 D, Spectrum Laboratories, Inc., USA) fixed on one end. The other end of tube was attached to the bottom of a dissolution tester apparatus 1 shaft. The membrane used was soaked in the release medium overnight before use. After sample addition the tube was lower enough to allow the membrane to be in touch with the surface of PBS buffer (500 ml) maintained at 37°C±0.5°C. The dissolution tester shaft was allowed to rotate at 50 rpm and at specific time intervals 3 ml samples were withdrawn and replaced with equal volume of fresh medium. Samples were filtered using 0.22 μm sterile syringe filters and analyzed for TMC content via Perkin Elmer spectrophotometer at a wave length of 237 nm. The release experiments were run in triplicates.

In-vivo study

Study design

Female Sprague Dawley rats' 250 gm ± 20 gm in weight that were 4 or 5 weeks old were supplied by the Holding Company for Biological Products and Vaccines [VACERA], Egypt. All rats were maintained in a light controlled room maintained at 22°C ± 2°C and 55% RH ± 5% RH (Animal House of Pharmacology Department - Faculty of Pharmacy - Helwan University). Approval to carry out the in-vivo study was obtained from the Animal Ethics Committee of Faculty of Pharmacy, Helwan University. The rats were divided into 2 groups, 7 rats each and fasted overnight (12 h) with free access to water before the experiments. One group of animals received oral free TMC (suspension) prepared by shaking 20 mg of TMC in 16 ml distilled water, 2 ml of the prepared suspension was administered orally to each rat. The second group was directly injected in the breast tissues with thermosensitive gel (sol form). All formulations were administered at a dose of 10 mg/ Kg body weight. The site of injection was marked to facilitate tissue separation.

Blood samples (8 hours post administration) were collected by retro-orbital puncture from the rats after being mildly anaesthetized using diethyl ether, and placed into previously heparinized eppendorf tubes (approximately 1 ml). Rats were then euthanized with diethyl ether and tissues were collected to quantify the content of drug in them. Plasma was separated by centrifuging the blood samples at 2000 rpm for 5 min at 4°C. Liver and breast tissues were rinsed with isotonic buffer and homogenized according to previously reported method [29]. Tissue samples were homogenized (1:5, w/v) in 50 mM Tris-HCL, at pH 7.4 and acetone/water was used for drug extraction. The prepared homogenates contains 20% of liver tissues and 10% of breast tissues. Plasma and tissues samples were stored at -80°C till quantitative analysis [4].

\[
\text{Dissolution Efficiency (DE) = } \frac{\int_{t_1}^{t_2} Y \cdot dt}{\int_{t_1}^{t_2} Y_{f0} (t_2 - t_1) \cdot 100} \text{ Eq. 1}
\]

Where, \(Y\) is the percentage of drug dissolved between time points '\(t_1\)' and '\(t_2\)'.

\[
\mu_{y} = \frac{Y_{y} - Y_{0}}{Y_{f0} - Y_{0}} \cdot 100
\]

\[\mu_{y} \text{ is the percentage of dissolution between time points } t_1 \text{ and } t_2.\]
Plasma levels of TMC were analyzed using a modified HPLC reported method [5]. A mobile phase of acetonitrile: methanol (85: 15 % v/v) containing 0.02% triethylamine was used for the analysis at a flow rate of 1.5 ml/min. Column was Agilent Zorbax Octa-decyl-silyl (ODS), with dimensions 250 mm x 4.6 mm. Plasma and tissue samples were prepared for analysis by adding equal volume of acetonitrile to each sample, followed by vortexing for 30 seconds and centrifugation at 4000 rpm for 15 minutes. The upper layer was transferred to another tube, filtered through a 0.45um Millipore filter, and then 10 μl was injected into the HPLC column. Samples were quantified for TMC content against a calibration curve constructed from spiking plasma samples with 0.1 ml of the standard TMC solutions followed by acetonitrile extraction.

Statistical analysis
An unpaired student t-test was used in the comparison of the amount of drug retained in-vivo between the liver, breast tissues and plasma after 8hrs of administration using InStat3 program (version 3, Graph Pad software, Inc., La Jolla, CA 92037, USA).

RESULTS AND DISCUSSION
Characterization of Tamoxifen citrate cyclodextrin complexes

Fourier Transform Infrared Spectroscopy
Spectra of samples of TMC, β-CD, SBE-β-CD, HP-β-CD, drug-CD's inclusion complexes and poloxamers were characterized (charts not shown). The detection revealed that the spectrum of TMC-CDs inclusion complexes exhibited only one new highly intense narrow peak observed at 1639 cm⁻¹. The obtained peak is characteristic to the hydrogen bond that formed between the C=O group of TMC and the OH group of the CDs in the complex. The results showed no significant difference in the abundant peaks of the spectrum of free polymer and may be explained on the basis of incomplete drug inclusion within the polymer's cavity.

Differential scanning calorimetry (DSC)
The DSC thermogram of TMC powder exhibits a single sharp endothermic peak at 144.68°C [30] corresponding to its melting point and indicating its crystalline state (Figure 1-A). Whereas, β-CD had an endothermic peak at 102°C corresponding to its dehydration [31] (Figure 1-B). In the TMC/β-CD physical mixture the two endothermic peaks appeared at almost the same corresponding temperature of the pure components but with lower intensity due to dilution (Figure 1-C). In the TMC/β-CD prepared complex there was shift in β-CD endothermic peak to lower temperature of 82°C and reduction in the TMC peak enthalpy compared to the physical mixture. The peak shift in complex compared to physical mixture reflected complex formation. However, appearance of TMC peak in the complex was indicative of partial complexation where some free drug molecules still existed in the system.

The physical mixture of TMC/HP-β-CD thermogram showed two endothermic peaks at 62°C and 150°C for HP-β-CD dehydration and melting of TMC, respectively, which were at the same temperature as individual curves (Figure 1-F). However, in the TMC/HP-β-CD complex the TMC melting peak disappeared completely as a result of full complexation (Figure 1-G). Moreover, the broad HP-β-CD endothermic peak was changed to a relatively sharp one and shifted to higher temperature of 79°C. Absence of drug melting peak as a result of complete complexation was correlated to what has been previously reported in literature [32].

The thermogram of SBE-β-CD (Figure 1-H) revealed an endothermic peak at 77.43°C related to the dehydration of CD [33]. The thermogram of prepared TMC/SBE-β-CD complex showed complete disappearance of the drug melting peak similar to that observed with TMC/HP-β-CD complex (Figure 1-J). The results obtained indicated that the extent of drug complexation varied according to the type of cyclodextrin used. In case of β-CD, complexation was partial and some TMC molecules were still free in the matrix whereas in case of HP-β-CD and SBE-β-CD all drug molecules were involved in inclusion complexation.
In-vitro TMC release studies from inclusion complexes and physical mixtures

Figure 2 represented the release profile of TMC from different inclusion complexes and their physical mixtures. The data showed that all inclusion complexes as well as physical mixtures of TMC-CD systems exhibited better release profile than pure TMC. Among the three types of cyclodextrins, SBE-β-CD complex provided the highest rate and the best DE factor (61.1%). (Figure 2, Table 1). The dissolution efficiency data can be explained on the basis of the very low pKₐ of sulfonic acid groups that provided SBE-β-CD with multiple negative charges at physiologically compatible pH values [34]. The four carbon butyl chain coupled with repulsion of the end group negative charges allows the extension of CD cavity. This often results in stronger binding to drug candidates compared to other modified CDs. The water solubility of SBE-β-CD (>500mg/ml at 25°C) [35] is significantly higher than the parent β-CD (18.5 mg/ml at 25°C) [36]. Therefore, based on DE results of TMC/SBE-β-CD inclusion complex was selected for formulation of thermo-sensitive gel in situ [37-39].

The highest safety profile of injectable SBE-β-CD confirmed our selection. This polymer does not exhibit the nephrotoxicity of β-CD and moreover SBE-β-CD complexation had been reported to provide protection against drug-induced cytotoxicity [40].

![Fig. 2: Release profile of TMC from different inclusion complexes and their physical mixtures.](image)

Table 1: Dissolution efficiency values for the different prepared systems

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Dissolution efficiency percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure drug</td>
<td>27.83 ± 0.59%</td>
</tr>
<tr>
<td>TMC/SBE-βCD physical mixture</td>
<td>45.62 ± 0.39%</td>
</tr>
<tr>
<td>TMC/SBE-βCD complex</td>
<td>61.1 ± 0.32%</td>
</tr>
<tr>
<td>TMC/HP-βCD physical mixture</td>
<td>42.13 ± 0.69%</td>
</tr>
<tr>
<td>TMC/HP-βCD complex</td>
<td>49.53 ± 0.45%</td>
</tr>
<tr>
<td>TMC/βCD physical mixture</td>
<td>45.14 ± 0.47%</td>
</tr>
<tr>
<td>TMC/βCD complex</td>
<td>50.14 ± 0.24%</td>
</tr>
</tbody>
</table>

Table 2: The composition of thermo-sensitive sol-gel formulations

<table>
<thead>
<tr>
<th>Formula</th>
<th>Drug Description</th>
<th>Poloxamer407 (Pluronic 127)</th>
<th>Poloxamer188 (Pluronic 68)</th>
<th>Gelling Temperature (°C)</th>
<th>Comment*</th>
</tr>
</thead>
<tbody>
<tr>
<td>F₁</td>
<td>---</td>
<td>20%</td>
<td>---</td>
<td>21°C ± 1°C</td>
<td>N.</td>
</tr>
<tr>
<td>F₂</td>
<td>---</td>
<td>20%</td>
<td>5%</td>
<td>25.5°C ± 1°C</td>
<td>N.</td>
</tr>
<tr>
<td>F₃</td>
<td>10 mg pure TMC</td>
<td>20%</td>
<td>5%</td>
<td>26.5°C ± 0.5°C</td>
<td>N.</td>
</tr>
<tr>
<td>F₄</td>
<td>TMC/SBE-βCD complex equivalent to 10 mg Pure TMC</td>
<td>20%</td>
<td>5%</td>
<td>26.5°C ± 0.5°C</td>
<td>N.</td>
</tr>
<tr>
<td>F₅</td>
<td>10 mg pure TCM</td>
<td>20%</td>
<td>10%</td>
<td>30.5°C ± 0.5°C</td>
<td>N.</td>
</tr>
<tr>
<td>F₆</td>
<td>TMC/SBE-βCD complex equivalent to 10 mg Pure TMC</td>
<td>20%</td>
<td>10%</td>
<td>32.5°C ± 0.5°C</td>
<td>N.</td>
</tr>
<tr>
<td>F₇</td>
<td>---</td>
<td>20%</td>
<td>10%</td>
<td>33°C ± 0.5°C</td>
<td>N.</td>
</tr>
<tr>
<td>F₈</td>
<td>---</td>
<td>20%</td>
<td>15%</td>
<td>36°C ± 1°C</td>
<td>S.</td>
</tr>
<tr>
<td>F₉</td>
<td>10 mg pure TMC</td>
<td>20%</td>
<td>15%</td>
<td>36.5°C ± 0.5°C</td>
<td>S.</td>
</tr>
<tr>
<td>F₁₀</td>
<td>TMC/SBE-βCD complex equivalent to 10 mg Pure TMC</td>
<td>20%</td>
<td>15%</td>
<td>37°C ± 0.5°C</td>
<td>S.</td>
</tr>
<tr>
<td>F₁₁</td>
<td>---</td>
<td>20%</td>
<td>15%</td>
<td>No Gelling Characters</td>
<td>N.</td>
</tr>
<tr>
<td>F₁₂</td>
<td>10 mg pure TMC</td>
<td>20%</td>
<td>15%</td>
<td>22°C ± 0.5°C</td>
<td>N.</td>
</tr>
</tbody>
</table>

* N: Not exposed to further examination, S: Selected for further examination.

Poloxamers present in w/v%. Each row shows all contents of each formulations. The volume of each formula is 5 ml.
Preparation of Thermosensitive gel

Measurement of gelation temperature

The T_{gel} transition temperature of the formulations developed - with and without drug - having different ratios of poloxamer F127 to poloxamer F68 was determined (Table 2). Transition temperature exhibited an increment when percent of poloxamer F68 increased in the formulation. This increment was attributed to the thickening power of poloxamers in water corresponding to the molecular weight and ethylene oxide/propylene oxide ratio [41, 42]. The optimum concentrations of poloxamer analogs for the in situ gel-forming delivery system were 20% (w/v) Poloxamer 407 (F127) and 15% (w/v) Poloxamer 188 (F68) that exhibited sol-gel transition at 36.5°C ± 0.5°C. Therefore, formulations F9 and F10, which have the closest gelling temperatures to the human body temperature (36.5° and 37°C, respectively) were selected for further studies.

The thermosensitive property of gels was evaluated by sol/gel transition temperatures ($T_{\text{sol} \rightarrow \text{gel}}$). At this particular temperature a drastic change occurs in the rheological behavior and the elasticity modulus which is a measure of the energy stored and recovered per cycle of deformation and reflection of the solid-like component of the system [43]. A gelation in the range of 25-37°C is optimum for development a thermosensitive formulation. With gelation temperature lower than 25°C the formulation might exist in the gel form at room temperature leading to difficulty in manufacturing, handling, and administering. On the other hand, when the gelation temperature is higher than 37°C it would result in a formulation that remains in the liquid state till administration.

Rheological behavior measurements

The sol-gel transition temperature ($T_{\text{sol} \rightarrow \text{gel}}$) was chosen as the temperature at which both moduli were equal, reflecting similar elastic and viscous properties (17). Complex viscosity (η^*) obtained under dynamic conditions of oscillatory tests (frequency range of 1-1000 Hz at 18°C and 37°C) is comprised of real part known as dynamic viscosity (η') and imaginary out-of-phase part (η'') according to the following equation [25, 26].

$$\eta^* = \eta' + i\eta''$$ \hspace{1cm} Eq. 2

Where η^* is the complex viscosity, i is the imaginary unit, $i^2 = -1$

Viscous properties of samples are identified by η', whereas η'' represents their elastic properties. Both η' and η'' are related to the loss modulus (G'') and storage modulus (G') of the sample via the relationships:

$$\eta'' = G''/\omega$$ \hspace{1cm} Eq. 3

$$\eta' = G'/\omega$$ \hspace{1cm} Eq. 4

Where ω is the angular frequency, which is related to the frequency (f) by:

$$\omega = 2\pi f$$ \hspace{1cm} Eq. 5

All formulations at 18°C were in a liquid form and showed a Newtonian behaviour with no significant changes in viscosity over a broad range of shear rates. The PAV measurements in Figures 3 top part, showed that at 18°C, most of formulations exhibited viscosity η_1 near from 0.1 to 0.3 Pas and negligible η_2 (Newtonian behaviour, whereas η_1 is constant and $\eta_2 = 0$). While at 37°C, all formulations showed non Newtonian behaviour and high viscosity values (Figures 3 bottom part for F2, F5, and F8 compared to Figures 5, 6 for F9, F10 respectively).

The PAV measurements of hydrogel samples presented in Figures 3-6, also demonstrated the effect of poloxamer concentration on rheology. The data in Figure 3 revealed that the viscosity η_1 increased from 130 m Pas to 190 m Pas with increasing the percentage of Pluronic 68 from 5% (F2) to 15% (F8) at 18°C. In contrast, samples F9 and F10 (similar in P68 content) had the same viscosity and moreover had higher elastic modulus and higher viscosity than the other samples at the same temperature (Figure 4).

![Fig. 3: PAV measurements of samples F2 (20%F127+5%F68, black square), F5 (20%F127+10%F68, red circle) and F8 (20%F127+15%F68, green triangle) at 18°C (top figure) and 37°C (bottom figure).]
On the other hand, at 37°C a dramatic shear-thinning behavior was observed in the profiles of all formulations. As the angular frequency increased from 1 to 1000 (by log value from 0 to 3), the viscosity dropped 100 folds or more. The remarkable shear thinning behavior at 37°C indicates the temperature induced gel structure formation of the poloxamers based formulation [42]. The samples had a Newtonian behavior below the gelation temperature that behaves linearly with frequency and non-Newtonian behavior above this measurement (Figures 5, 6) [44,45]. The PAV measurements during 8 month- storage period of F9, F10 at RT and dark place revealed that the fresh samples were more elastic than viscous as \(\eta_1 > \eta_2 \) indicating to the gel. While, the aged samples exhibited liquid like behavior as \(\eta_2 > \eta_1 \). Also, the magnitude of \(\eta_1 \) and \(\eta_2 \) decreased with time (Figure 7). Consequently, F9 and F10 thermosensitive gel formulae were selected for further drug release studies based on gelation temperature values that were found to be around human body temperature (data in Table 2).
In-vitro TMC release studies from thermosensitive gels

Figure 8 showed that the time of complete drug release for F10 was 11 hr compared to 27 hr for F9. Difference in release profiles was mainly attributed to high solubility of TMC/SBE-β-CD complex compared to pure TMC (Figure 2) that obviously appeared in the release time of drug from formulation (Figure 8). In other words, the release of drug from TMC-SBE-β-CD complex-containing thermosensitive gel (F10) was faster than from gel loaded with free drug (F9) thus, indicated that the enhancement of drug release by complexation with SBE-β-CD (F10) was still prominent after incorporation in the thermosensitive gel.

The results suggested that formulation of TMC in poloxamer thermosensitive gel might slow drug diffusion from gel if applied to cancerous tissues and consequently enhance drug retention that can be ensured from in-vivo experiment. We hypothesized that the cyclodextrin would slow down the diffusion of lipophilic TMC from hydrogel and that the polymeric gel would slow down the diffusion of TMC/SBE-β-CD complex, and thus, ultimately enhancing the retention of the injected TMC-CD in breast tissues. Therefore, F10 was selected for in-vivo retention studies.

In-vivo studies, HPLC quantification and statistical analysis:

To confirm the ability of TMC/ SBE-β-CD -Gel to retain the TMC in tissues, drug concentration in nt breast tissues, plasma and liver were determined 8 hr after breast tissue injection F10 and compared to orally delivered suspension and TMC/ SBE-β-CD solution injection as control. The selection of this time point (8 hr) based on the reported TMC pharmacokinetics data in literature. It was reported that TMC elimination is biphasic, with an initial half-life of around 7.3 hr and a terminal half-life of 7-11 days with the reported T_{max} of 4-7 hr for free TMC [46]. As demonstrated in Figure 9, TMC/ SBE-β-CD -Gel (F10) significantly extended the retention of TMC in breast tissues (p < 0.05). This is likely because the hydrogel limited the diffusion of the TMC inclusion complex from the tissues.

We have also quantified the amount of TMC recovered from blood and liver to examine the re-distribution of TMC/ SBE-β-CD -Gel 8 hr after tissue injection. Figure 9 showed no significant difference in plasma drug level in case of direct tissue injection and oral administration. The authors attributed this result to the neglected effect of SBE-β-CD complexation on TMC plasma concentration. Previously from literature, it was found that the TMC metabolite plasma concentration was not affected by complexation of TMC with hydroxybutyrenal- β-cyclodextrin after oral as well as intravenous injection [47].

However, when TMC was administered orally a significant fraction was recovered from liver 8 hr after dosing compared to direct injection of gels into breast tissues. One explanation is in vivo, F10 might have immediately gelated into a semi-solid state, and thus, prevented the significant outflow of the TMC-CD from breast tissues. Meanwhile, in the absence of the hydrogel, a significant fraction of the TMC-CD injected into might have been forced out of tissues because of the increased intracellular pressure generated by the
injection. In other words, the lowest percent of the injected
thermosensitive gel was diffused out of the breast tissue and into
liver for re-distribution. The results were in agreement with our
previous finding and literature reporting that thermo-sensitive gels
aimed to enhancing the retention of drugs when delivered locally
[48, 49].

CONCLUSION

In this study, we have shown that dispersing TMC-cyclodextrin complex
into a thermosensitive polymeric gel is a promising candidate for TMC
delivery. The hydrogel helped to enhance the retention of drug in breast
tissues. Moreover, other lipophilic chemotherapeutic agents may also be
locally delivered into tumors using similar cyclodextrin-in-
thermosensitive gel system to increase the residence time of the
chemotherapeutic agents in the tumors, and thus, to improve their anti-
tumor efficacy and decrease their non-targeted toxicity.

REFERENCES

1. Powles TJ. The case for clinical trials of tamoxifen for prevention of
2. Jaiesimi IA, Buzdar AU, Decker DA, Hortobagyi GN. Use of
tamoxifen for breast cancer: twenty-eight years later. J Clin
258 (5083): 734.
4. Jagabeesh HG, Devir K. Tamoxifen loaded poly (ε-
caprolactone) based injectable microspheres for breast cancer. Int J
Pharm Pharm Sci. 2010; 2 (4): 189-195
5. Gao S, Singh J. In vitro percutaneous absorption enhancement of a
lipophilic drug tamoxifen by terpenes. J Control Release
SA, Balaji S, et al. Dissolution rate enhancement of poorly
soluble Bicalutamide using β-Cyclodextrin inclusion
8. Ghorab MK, Adeyeye MC. Enhanced bioavailability of process-
induced fast-dissolving ibuprofen cogranulated with beta-
9. Szejtli J. Introduction and General Overview of Cyclodextrin
10. Talasaz AHH, Ghalremanlizhani AA, Moghadam SH, Malekshahi
MR, Atyabi, F, Dinarvand R. In situ gel forming systems of
poloxamer 407 and hydroxypropyl cellulose or hydroxypropyl
methyl cellulose mixtures for controlled delivery of
11. Bromberg L. Self-Assembly in Aqueous Solutions of Polyether-
Modified Poly(acrylic acid). Langmuir 1998;14 (20): 5806-
5812.
12. Conte U, Colombo P, Gazzaniga A, Sangalli ME, La Manna A.
13. Couffin-Hoarau AC, Motulska A, Delmar P, Leroux JC. In situ-
forming pharmaceutical organogels based on the self-assembly of
14. Beyssac E, Bregnol C, Aiache JM, Smolko E. Hydrogel implants
for methotrexate obtained by ionizing radiation. Drug Del Ind
15. He C, Kim SW, Lee DS. In situ gelling stimuli-sensitive block
127 (3): 189-207.
16. Ruet-Gariepy E, Leroux, JC. In situ-forming hydrogels—review
of temperature-sensitive systems. Eur J Pharm Biopharm 2004;
58 (2): 409-426.
Thermoreversible morphine gel. Drug Del Ind Pharm 1991;
17 (9): 1255-1265.
18. Kabanova AV, Alakhov YV. Phrmonic block copolymers in drug
delivery: from micellar nanocontainers to biological response
poloxamer 407 pharmaceutical and pharmacological
atriuretic factor in thermoreversible poloxamer gels. Biomaterials
21. Albers E, Muller BW. Cyclodextrin derivatives in
311-337.
22. Thompson DO. Cyclodextrins—enabling excipients: their
present and future use in pharmaceuticals. Crit Rev Ther Drug
23. Choi HG, Jung JH, Ryu JM, Yoon SI, Oh YK, Kim CK. Development
of in situ gelling and mucoadhesive acetaminophen liquid
24. Miyazaki S, Nakamura T, Takada M. Thermo-sensitive sol-gel
25. Cassous JJ, Regissier R, Ballauf M, Wilkenhauer N. Characterization of the viscoelastic behavior of complex fluids
26. Smith BA, Tolleczko B, Martin JG, Peter Grütter P. Probing the
viscoelastic Behavior of Cultured Airway Smooth Muscle Cells
with Atomic Force Microscopy: Stiffening Induced by

Fig. 9: Quantification of TMC in breast tissues, plasma and liver 8 hr after a single oral dose and a single breast tissue injection with TMC-
SBE-β-CD solution and hydrogel F10 (n = 7).