IN VITRO EVALUATION OF ANTIBACTERIAL ACTIVITY OF FIVE INDIGENOUS PLANTS EXTRACT AGAINST FIVE BACTERIAL PATHOGENS OF HUMAN

SURESH MADDLURI1*, K. BABU RAO2, B.SITARAM3

1 Dept. of Biochemistry, Acharya Nagarjuna University, Nagarjuna nagar, Guntur, Andhra Pradesh, 2 Department of Biotechnology, Bharathidasan University, Tamil Nadu, 3 Dept. of Basic science and Humanity, PVP Siddhthra Institute of Technology, Kanuru, Vijayawada, Andhra Pradesh, India. Email: sureshmadduluri123@gmail.com

Received: 07 Oct 2013, Revised and Accepted: 20 Oct 2013

ABSTRACT

Methanol and ethanol leaf extracts of five indigenous plants of Piper betle L., Punica granatum L., Psidium guajava L., Gloriosa superba, L. and Mangifera indica, L. were investigated for their in vitro antimicrobial properties against five bacteria species of Escherichia coli, Klebsiella pneumonia, Salmonella typhi murium, Staphylococcus aureus and Bacillus cereus. The antimicrobial activity of the extracts was evaluated and based respectively on the inhibition zone using the agar well diffusion assay and minimal inhibition concentration (MIC). The antibacterial activity of two solvent of five leaves of indigenous plants crude extract against five MTCC bacteria species of Escherichia coli, Klebsiella pneumonia, Salmonella typhi murium, Staphylococcus aureus and Bacillus cereus by the well diffusion showed zone of inhibition ranges from 11.0 ± 0.5 to 15.2 ± 1.0 for methanol extract and 9.0 ± 1.5 to 19.0 ± 0.5 for ethanol extract. MIC values for methanol extract against five bacterial species ranges from 0.5 to 0.0977 μg/ml and for ethanol extract are 2.5 to 0.07813 μg/ml respectively. The strong in vitro antibacterial activity of the separated compound against gram positive and gram negative suggests the wide pharmaceutical application.

Keywords: Antibacterial activity, Agar well diffusion, Minimal Inhibition Concentration (MIC), Indigenous plants, p-iodonitrotetrazolium violet (INT).

INTRODUCTION

Infectious diseases are the world’s leading cause of premature deaths, killing almost 50,000 people every day. In recent years, drug resistance to human pathogenic bacteria has been commonly reported from all over the world[1,2,3,4,5]. However, the situation is alarming in developing as well as developed countries due to indiscriminate use of antibiotics. The drug-resistant bacteria and fungal pathogens have further complicated the treatment of infectious diseases in immunocompromised, AIDS and cancer patients [6,7]. In the present scenario of emergence of multiple drug resistance to human pathogenic organisms, this has necessitated a search for new antimicrobial substances from other sources including plants.

Traditionally used medicinal plants produce a variety of compounds of known therapeutic properties [8,9,1]. The substances that can either inhibit the growth of pathogens or kill them and have no or least toxicity to host cells are considered candidates for developing new antimicrobial drugs. In recent years, antimicrobial properties of medicinal plants are being increasingly reported from different parts of the world [11,12,13][14,15,16]. It is expected that plant extracts showing target sites other than those used by antibiotics will be active against drug-resistant microbial pathogens. However, very little information is available on such activity of medicinal plants [17,18].

Piper betle L. leaves is widely used as a mouth freshener after meal. This plant is extensively grown in Bangladesh, India, Sri Lanka, Malaysia, Thailand, Taiwan and other Southeast Asian countries. Its common name is betel in English, paan in India and Bangladesh[19]. Indian system of medicine and health has adopted the use of betel leaves in various ways. In Indian folkloric medicine, betel leaf is popular as an antiseptic and is commonly applied on wounds and lesions for its healing effects. Essential oil extracted from betel leaf may be used as an industrial raw material for manufacturing medicines, perfumes, mouth fresheners, tonics, food additives etc.[20].

Punica granatum L. commonly known as pomegranate, is a fruit-bearing deciduous shrub or small tree, native to Asia and belongs to the family Lythraceae[21]. The leaves are shiny and about 7.6 cm long[22]. Different parts of the plant such as bark, leaves, immature fruits and fruit rind have medicinal significance[23]. Punica granatum L. has been extensively used as a traditional medicine in many countries for the treatment of dysentery, diarrhea, helminthiases, acidosis, hemorrhage and respiratory pathologies[24]. Additionally, this plant is reported to have excellent antibacterial, antifungal, antiprotozoal and antioxidant properties[25,26,27]. Numerous phytochemical constituents have been reported to be present in different parts of the pomegranate plant making it pharmacologically precious[28].

Psidium guajava Linn., belonging to the Family Myrtaceae, is originated in the tropical South America[29] and grows wild in Bangladesh, India, Thailand, Brazil, Florida, West Indies, California and also in several other countries[30]. Guajava leaf extract contains guajava polyphenol that has an anti-oxidation action[31,32] and flower and leaf of the plant have been reported to have antibiotic activity[33]. The leaves contain various constituents such as fixed oil 6%, volatile oil 0.365% 3.15% resin, 8.5% tannin, fat, cellulose, chlorophyll and mineral salts and a number of other fixed substances[34,35].

Gloriosa superba Linn., is an important medicinal plant belonging to the family Liliaceae. Which is one of the endangered species among the medicinal plants[36,37]. Being native form Indian especially Southern India it is known as glory lily and climbing lily in English. In the world market glory lily considered as rich source of colchicines and gloriosine[38]. The flower has analgesic, anti-inflammatory potential, antimicrobial, larvicial potential, antipox viral potential, antithrombotic potential, antitumor potential, enzyme inhibition potential, and also in treatment of snake bite, Skin disease, respiratory disorders[39,40,41].

Leaves of Mangifera indica, L. contain alkaloids, anthracenoides, coumarins, flavonones, sugars, tannins, steroids and saponins. These, together with chlorophyll, are responsible for the extract colours observed. The fruity or sweet smell of the extracts is due to the presence of esters and essential oils in the plant extracts[42,43]. Some of these compounds have been reported to possess antimicrobial activity[44].

In this study, methanol and ethanol extracts of five plants, which had been described in herbal books and folkloric medicine of India, were screened for their antimicrobial activity. The species tested were: Piper bete L. (Betel leaf or Betelvine) - leaf, Punica granatum L. (Pomegranate) - leaf, Psidium guajava L. (Guava) - leaf, Gloriosa superba, L. (glorylily) - leaf and Mangifera indica, L. (mango), - leaf against five bacteria pathogens of human: three gram negative (Escherichia coli, Klebsiella pneumoniae Salmonell typhi murium) and two gram positive (Staphylococcus aureus, and Bacillus cereus).
MATERIALS AND METHODS

The leaves of selected indigenous plants were collected from Prakasam district of Andhra Pradesh, South India. The leaves were identified and authenticated by K. Babu Rao, Incharge Scientist, Sai Lara Biotechnology, Hyderabad, Andhra Pradesh, India. The leaves of selected indigenous plants were separated and washed with sterile distilled water and dried using laminar air flow, ground into fine powder using a blender and stored in air tight container till further analysis.

Plant Materials

Extraction procedure

Ten grams of each plant fine powder of indigenous plants weighed into a 250 ml conical flask and 100 ml of methanol and ethanol was added separately for each plant powder then on a rotary shaker at 190 – 220 rpm for 24 hours[45]. This was filtered with Whatman No1. Filter paper, the residue discarded, and the filter were evaporated to dryness in a water bath temperature at 80°C.

Preparation of stock solution for each extract of leaves selected indigenous plants powder

Stock solution was prepared by weighing 10 mg of each dried solvent extract dissolved in 1 ml of dimethyl sulphoxide (DMSO) giving a final concentration of 10,000 µg/ml. The stock solution was kept in screw capped bottles for subsequent use.

Test Microorganisms

The test organisms were supplied by Microbial Type Culture Collection and Gene Bank (MTCC), Chandigarh – 160036, India. Three gram-negative bacteria: (Escherichia coli (MTCC 443), Klebsiella pneumonia (MTCC3384), Salmonell typhu muriu (MTCC 3241) and two gram positive (Staphylococcus aureus (MTCC3160), and Bacillus cereus (MTCC1305).

Agar well diffusion Method

The antibacterial activity of Methanol and Ethanol extract of five Indigenous medicinal plants against eight standard organisms by using agar well diffusion method according to the National Committee for Clinical Laboratory Standard (NCCLS). Briefly, 3-5 morphologically identical colonies from each agar plate were lifted with a sterile wire loop and transferred into a tube containing 5 ml of tryptic soya broth (TSB). The turbidity of each bacterial suspension was adjusted to reach an optical comparison to that of 0.5 McFarland standards, resulting in suspension containing approximately 1 to 2 X 10⁸ CFU/ML. Muller-Hinton agar plates were inoculated by streaking the swab over the entire sterile agar surface. This procedure was repeated by streaking two more times, rotating the plates approximately 60° each time to ensure even distribution of the inoculum. As a final step the rim of the agar plate was also swabbed. After allowing the inoculum to dry at room temperature, 6mm diameter wells were bored with sterile metal borer. Each extract was checked for antibacterial activity by introducing 10µl of 100 mg/ml concentration into duplicate wells by using sterile micro pipette. The plates were allowed to stand at room temperature for 1 h to allow diffusion of extract into the agar. Then, plates were incubated at 37°C for 18 h in upright position. The presence of zone of inhibition was regarded as the indicator of antimicrobial action and the antimicrobial activity of extract was expressed in terms of average diameter of zone inhibition measured in millimeters. Each test was carried out in triplicate.

Determination of Minimum Inhibitory Concentration (MIC) By Micro broth Dilution Technique

Minimal inhibitory concentration (MIC) was determined for the extracts by broth dilution method as described by Ayafor et al., (1994)[46]. The concentration at which there was no visually detectable bacterial growth was taken as the MIC. MIC is defined as the lowest concentration that is able to inhibit any visible microbial growth and below that concentration which, there is no further inhibition.

MIC Method

Quantitative antimicrobial activity assay was carried for both methanol and ethanol extracts of test compound by determining minimum inhibitory concentrations (MIC). Bacterial species were cultured from 12-hour broth cultures and suspensions were adjusted to 0.5 McFarland standard turbidity. All tests were performed in Muller Hinton broth (MHB). A two-fold serial dilution of each test compounds (100µl) in sterile normal saline was prepared in 96 wells mikrotiter plate and 50µl overnight fresh bacterial culture and suspensions were adjusted to 0.5 McFarland standard turbidity unit were added to each well. The antibiotic ciprofloxacin and normal saline were included as standard references in each assay. The plates were incubated overnight at 37°C. As an indicator of bacterial growth, 50µl of p-iodonitrotetrazolium violet (INT) 0.2 mg/ml was added to each well and incubated at 37°C for 30min. MIC values are recorded at the lowest concentration of test compound (both methanol and ethanol extracts) that completely inhibited bacterial growth that showed clear color less well. The colorless tetrazolium salt acts as an electron accepter and is reduced to red colored formazan product by biological active organisms indicating bacterial growth, where bacterial growth was inhibited, the solution in the well remained clear color less after incubation with INT 0.2 mg/ml. The tested extract in this study was screened in three replicates against each organism.

RESULTS AND DISCUSSION

The methanol and ethanol extract of five indigenous plants were tested against the pathogenic microbes viz., *Ecoli*, a most common bacteria of which virulent strains can cause gastroenteritis, urinary tract infections, neonatal meningitis; *Klebsiella pneumonia* which is the causative organism of pneumonia; *Salmonell typhu muriu* causes symptoms resembling typhoid fever in humans; *Staphylococcus aureus*, a wound infecting pathogen which can cause septicemia, endocarditis and toxic shock syndrome; *B. cereus* is responsible for a minority of foodborne illnesses (2–5%), causing severe nausea, vomiting and diarrhea.

Out of five plants tested for antimicrobial activity, five plant species showed antibacterial activity by inhibiting five microorganisms. The results of the antimicrobial activity of plant extracts tested against microorganisms by agar well diffusion method are shown in Table –1 and 2. Among the plants screened, the both methanol and ethanol extract of *Piper betle*, *Gloriosa superb* and *Mangifera indica*, showed significant inhibition of all tested bacteria followed by *Gloriosa superb* < *Mangifera indica* < *Piper betle* < *Punica granatum* < *Psidium guajava* against five pathogens.

Table 1: Antibacterial activity of selected indigenous medicinal plants Ethanol extracts (10mg/ml of DMSO crude extract each part of plant, (100µg concentration in well) and ciprofloxacin antibiotic (10 µg /ml) against, gram negative and gram positive microbial species tested by using agar well diffusion Diameter of Zone of inhibition (mm)

<table>
<thead>
<tr>
<th>Microorganisms</th>
<th>PB</th>
<th>PG</th>
<th>PGU</th>
<th>GS</th>
<th>MI</th>
<th>DMSO</th>
<th>Cf</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td>13.1 ± 0.25</td>
<td>11.0 ± 1.25</td>
<td>10.5 ± 1.25</td>
<td>15.5 ± 0.25</td>
<td>13.0 ± 1.25</td>
<td>--</td>
<td>21.0 ± 0.5</td>
</tr>
<tr>
<td>KP</td>
<td>12.0 ± 0.5</td>
<td>12.0 ± 1.0</td>
<td>11.0 ± 1.5</td>
<td>14.0 ± 1.0</td>
<td>11.5 ± 1.25</td>
<td>--</td>
<td>22.0 ± 0.58</td>
</tr>
<tr>
<td>SM</td>
<td>16.0 ± 1.5</td>
<td>13.5 ± 1.2</td>
<td>11.5 ± 0.25</td>
<td>16.5 ± 1.25</td>
<td>13.5 ± 0.5</td>
<td>--</td>
<td>22.0 ± 0.55</td>
</tr>
<tr>
<td>SA</td>
<td>17.0 ± 1.0</td>
<td>15.0 ± 1.0</td>
<td>14.0 ± 0.5</td>
<td>17.5 ± 0.5</td>
<td>17.0 ± 0.5</td>
<td>--</td>
<td>23.0 ± 0.5</td>
</tr>
<tr>
<td>BC</td>
<td>19.5 ± 1.5</td>
<td>11.0 ± 1.5</td>
<td>15.0 ± 1.25</td>
<td>18.0 ± 1.25</td>
<td>19.0 ± 1.5</td>
<td>--</td>
<td>25.0 ± 1.52</td>
</tr>
</tbody>
</table>
Plants name

Note: Values of the observed zone of inhibition (in mm diameter) including the diameter of well (6 mm) after 24 hours incubation against different bacterial species when subjected to different extracts in agar well diffusion assay. Assay was performed in triplicate and results are the mean of three values ± Standard Deviation. In each well, the sample size was 10µl. Inhibition observed in extracts due to solvent were assessed through negative controls. “-” No Inhibition Zone was observed. "Cf." - Ciprofloacin (10 µg ml-1) was used as standard antibiotic.

Values are the average triplicate; includes the agar well diameter (6mm)

Table 2: Antibacterial activity of selected indigenous medicinal plants Methanol extracts (10mg/ml of DMSO crude extract each part of plant, 100µg concentration in well) and ciprofloacin antibiotic (10 µg /ml) against, gram negative and gram positive microbial species tested by using agar well diffusion Diameter of Zone of inhibition (mm)

<table>
<thead>
<tr>
<th>Microorganisms</th>
<th>PB</th>
<th>PG</th>
<th>PGU</th>
<th>GC</th>
<th>MI</th>
<th>DMSO</th>
<th>Cf.</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.Coli</td>
<td>12.2 ± 0.25</td>
<td>9.2 ± 0.5</td>
<td>9.5 ± 0.25</td>
<td>10.2 ± 1.0</td>
<td>12.0 ± 1.0</td>
<td>--</td>
<td>17.0 ± 0.5</td>
</tr>
<tr>
<td>KP</td>
<td>9.0 ± 1.5</td>
<td>10.0 ± 1.25</td>
<td>7.5 ± 1.25</td>
<td>11.0 ± 1.5</td>
<td>9.0 ± 1.5</td>
<td>--</td>
<td>18.0 ± 0.58</td>
</tr>
<tr>
<td>SM</td>
<td>14.2 ± 1.5</td>
<td>11.5 ± 0.55</td>
<td>7.0 ± 0.25</td>
<td>14.0 ± 1.0</td>
<td>13.0 ± 0.25</td>
<td>--</td>
<td>17.0 ± 0.55</td>
</tr>
<tr>
<td>SA</td>
<td>17.0 ± 1.55</td>
<td>10.2 ± 0.25</td>
<td>10.7 ± 0.45</td>
<td>16.0 ± 1.5</td>
<td>14.2 ± 1.5</td>
<td>--</td>
<td>21.0 ± 0.5</td>
</tr>
<tr>
<td>BC</td>
<td>19.0 ± 1.0</td>
<td>8.6 ± 0.5</td>
<td>12.2 ± 0.55</td>
<td>17.0 ± 1.5</td>
<td>15.0 ± 0.25</td>
<td>--</td>
<td>22.0 ± 1.52</td>
</tr>
</tbody>
</table>

Table 3: Minimum inhibitory concentration (MIC) of indigenous plants Methanol extracts (10mg/ml of DMSO crude extract each part of plant, (1000 µg concentration) and ciprofloacin antibiotic (5 µg /ml) against gram negative, gram positive microbial species tested by using ELISA micro titer plate

<table>
<thead>
<tr>
<th>Microorganisms</th>
<th>PB</th>
<th>PG</th>
<th>PGU</th>
<th>GC</th>
<th>MI</th>
<th>CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.Coli</td>
<td>0.3125</td>
<td>2.5</td>
<td>0.15625</td>
<td>0.625</td>
<td>0.3125</td>
<td>0.15625</td>
</tr>
<tr>
<td>KP</td>
<td>0.3125</td>
<td>1.25</td>
<td>2.5</td>
<td>0.3125</td>
<td>0.15625</td>
<td></td>
</tr>
<tr>
<td>SM</td>
<td>0.78125</td>
<td>2.5</td>
<td>2.5</td>
<td>0.625</td>
<td>0.15625</td>
<td></td>
</tr>
<tr>
<td>SA</td>
<td>0.00245</td>
<td>1.25</td>
<td>1.25</td>
<td>0.00977</td>
<td>0.07813</td>
<td></td>
</tr>
<tr>
<td>BC</td>
<td>0.078125</td>
<td>0.3125</td>
<td>5.0</td>
<td>0.3125</td>
<td>1.3125</td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Minimum inhibitory concentration (MIC) of indigenous plants Ethanol extracts (10mg/ml of DMSO crude extract each part of plant, (1000 µg concentration) and ciprofloacin antibiotic (5 µg /ml) against gram negative, gram positive microbial species tested by using ELISA micro titer plate

<table>
<thead>
<tr>
<th>Microorganisms</th>
<th>PB</th>
<th>PG</th>
<th>PGU</th>
<th>GC</th>
<th>MI</th>
<th>CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.Coli</td>
<td>0.625</td>
<td>1.25</td>
<td>1.25</td>
<td>0.0625</td>
<td>0.3125</td>
<td>0.15625</td>
</tr>
<tr>
<td>KP</td>
<td>0.3125</td>
<td>1.25</td>
<td>2.5</td>
<td>0.625</td>
<td>0.3125</td>
<td></td>
</tr>
<tr>
<td>SM</td>
<td>0.3125</td>
<td>2.5</td>
<td>2.5</td>
<td>0.625</td>
<td>0.3125</td>
<td></td>
</tr>
<tr>
<td>SA</td>
<td>1.25</td>
<td>2.5</td>
<td>1.25</td>
<td>0.15625</td>
<td>0.3125</td>
<td></td>
</tr>
<tr>
<td>BC</td>
<td>0.15625</td>
<td>0.07813</td>
<td>0.07813</td>
<td>0.15625</td>
<td>0.3125</td>
<td>1.3125</td>
</tr>
</tbody>
</table>

Plants name

The agar well diffusion method was used to evaluate the antimicrobial activity by measuring the inhibition zone against the test microorganisms. Both methanol and ethanol extract of plants (10mg/10µl in each well of agar plate) exhibited the prominent antibacterial activity all the five bacteria but was more susceptible against Staphylococcus aureus and Bacillus cereus (Fig. 1 and 2) than Escherichia coli, Klebsiella pneumonia and Salmonell typhu murium (Fig. 3 and 4) whereas ethanol extract of five plant showed moderate zone of inhibition against gram negative bacterial pathogens of Klebsiella pneumonia and Salmonell typhu murium.

Both methanol and ethanol extracts of five plants extracts that showed maximum antimicrobial activity was taken for MIC assay. The result of MIC assay is shown in Table-3 and 4. Piper betle and Mangifera indica exhibited the highest antibacterial efficacy against gram positive and gram negative organisms at maximum lower concentrations (Table-3 and 4; Fig. 5 and 6) followed by : Bacillus cereus< Staphylococcus aureus< Escherichia coli< Salmonell typhu murium < Klebsiella pneumonia. Least efficacy was shown against gram positive organism of Bacillus cereus and Staphylococcus aureus which were inhibited at 0.00245 to 0.078125 µg/ml concentration.
Fig. 1: Antibacterial activity of the Ethanol extracts of *A. Gloriosa superb*, *B. Mangifera indica*, *C. Ciprofloxacin antibiotic against Staphylococcus aureus*

Fig. 2: Antibacterial activity of the Ethanol extracts of *C. Piper betle*, *D. Punica granatum*, *E. Mangifera indica*, *C. Ciprofloxacin antibiotic against Staphylococcus aureus*

Fig. 3: Antibacterial activity of the Ethanol extracts of *A. Gloriosa superb*, *B. Psidium guajava*, *C. Ciprofloxacin antibiotic against Escherichia coli*

Fig. 4: Antibacterial activity of the Ethanol extracts of *D. Punica granatum*, *E. Psidium guajava*, *C. Ciprofloxacin antibiotic against Escherichia coli*

Fig. 5: Minimum Inhibitory Concentration of the Methanol extract of *A. Piper betle*, *B. Punica granatum*, *C. Psidium guajava*, *D. Gloriosa superb*, *E. Mangifera indica*, *F. Mangifera indica*, *G. Psidium guajava*, *H. Psidium guajava*, *C. Ciprofloxacin antibiotic against Staphylococcus aureus and E. Coli*

Rows A, B, C, D & E: Methanol extract of test compound in serial dilution + broth culture (*Staphylococcus aureus*) + saline + INT indicator

Rows F & G: Methanol extract of test compound in serial dilution (*A. Piper betle*, *B. Punica granatum*, *C. Psidium guajava*) + broth culture (*E. Coli*) + saline + INT indicator

Row H: Ciprofloxacin in serial dilution + broth culture (*Staphylococcus aureus*) + saline + INT indicator
Phytochemical constituents such as alkaloids, flavonoids, tannins, phenols, saponins, and several other aromatic compounds are secondary metabolites of plants that serve a defense mechanism against predation by many microorganisms, insects and other herbivores[47]. The present study carried out on the plant samples revealed the presence of medicinally active constituents. The phytochemical constituents of the selected plants investigated. Analysis of plant extracts revealed the presence of coumarins, flavonoids, glycosides, phenols, saponins, steroids and tannins in most of the selected plants which could be responsible for the observed antimicrobial property. These bioactive compounds are known to act by different mechanism and exert antimicrobial action. Tannins bind to proline rich proteins and interfere with the protein synthesis[48]. Flavonoids are hydroxylated phenolic substance known to be synthesized by plants in response to microbial infection and it should not be surprising that they have been found in vitro to be effective antimicrobial substances against a wide array of microorganisms. Their activity is probably due to their ability to complex with extracellular and soluble proteins and to complex with bacterial cell walls[49]. Antimicrobial property of saponin is due to its ability to cause leakage of proteins and certain enzymes from the cell[50]. Steroids have been reported to have antibacterial properties, the correlation between membrane lipids and sensitivity for steroidal compound indicates the mechanism in which steroids specifically associate with membrane lipid and exerts its action by causing leakages from liposomes[51]. In this study, Bacillus cereus and Staphylococcus aureus were found to be sensitive to five plant extracts. The highest sensitivity of Bacillus cereus than S. aureus may be due to its cell wall structure and outer membrane[52]. Our results suggest that gram-positive bacteria are generally more sensitive to the herb extracts. This was consistent with the previous studies on other herbs.

CONCLUSION

Piper betle, Gloriosa superb and Mangifera indica exhibited the highest antimicrobial activity at a minimum concentration against both gram positive and gram negative pathogenic microorganisms. The results provide justification for the use of these plants in folk medicine to treat various infectious diseases.

REFERENCES

42. Marjorie, M.C. Plant products as antimicrobial agents. Clinical Microbiology Reviews, American Society for Microbiology, Department of Microbiology, Miami University, Oxford, OH, USA, 1999: 12, 564–582.

