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ABSTRACT 

Objective: The present study is designed to investigate the interaction of titanium dioxide nanoparticle (TiO2NPs) with human serum albumin (HSA) 
using spectroscopic techniques.  

Methods: TiO2NPs was characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS) and Fourier transform infrared 
(FTIR) spectroscopy. Effect of NPs on the conformation of HSA was evaluated by UV-vis and fluorescence spectroscopies. 

Results: The characterization result demonstrated that TiO2NPs were somewhat spherical with average diameter of ~32 nm. UV-vis and 
fluorescence spectroscopic studies showed that NPs form ground state complex with HSA.  

Conclusion: UV-vis and fluorescence spectroscopy depicted the formation of HSA-TiO2NPs complex induced conformational changes in human 
serum albumin. 
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INTRODUCTION 

Titanium dioxide nanoparticle (TiO2NPs) is used extensively in 
paint, pigment, food, medicine and pharmaceuticals. More than 70% 
of the total produced TiO2NPs is utilized as pigments owing to high 
brightness, large refractive index and resistance to discoloration [1, 
2]. It reflects UV light more strongly than the natural bulk material of 
same composition thus, vastly applied in sunscreen and personal 
care products. In some products the amount of TiO2NPs is even more 
than 10% by weight [3, 4].  

Human being exposed to nanoparticle either accidentally such as 
occupational exposure or intentionally using nanoparticle enabled 
consumer products. The major routes of exposure are inhalation, 
oral/dermal contact and intravenous injection [5, 6]. It has been well 
documented that the nanoparticle, after entry into the bloodstream 
first interacts with biomolecules like proteins, lipids and nucleic 
acids.  

Therefore, the effect of NPs is a combined effect of nanoparticle-
protein “corona” rather than noparticle alone [7]. Adsorption of 
protein onto surface of nanoparticle may change its properties like 
orientation, conformation and packing arrangement. This may cause 
toxicity, diverse biological reactions and disease conditions [8-10]. 
Proteins undergo varying degree of conformational changes in the 
presence of NPs. Therefore, understanding of protein NPs 
interaction is a fruitful application of NPs in toxicology and medicine 
[11, 12].  

HSA is the most abundant blood protein, plays key role in transport, 
distribution and metabolism of several exogenous and endogenous 
compounds such as drugs, metabolites, hormones, amino acids and 
fatty acids. It is a single polypeptide of 585 amino acid residues having 
17 pairs of disulphide bridges and one free cysteine residue. 
Crystallographic studies of diverse HSA drug complexes demonstrated 
that the protein has two well-known ligand binding sites called sites I 
and site II, also called warfarin and benzodiazepine binding site, 
respectively. Site I is located within subdomain IIA while site II is 
present in subdomain III. The amino acids in these sites primarily 
determine the binding specificity of ligands. These domains have 
flexible structure so the conformation of protein may change after 
ligand binding. Apart from these numerous secondary binding sites 
are distributed across the protein [13, 14].  

In the present study, we investigated the effect of TiO2NPs on the 
conformation of HSA at physiological condition using spectroscopic 
techniques. The study is helpful in understanding the possible 
mechanism of interaction of TiO2NPs with human serum albumin.  

MATERIALS AND METHODS 

HSA (fatty acid free) and TiO2NPs were purchased from Sigma-
Aldrich (St. Louis, MO, USA). All other chemicals and reagents were 
of analytical grade and used without any further purification. 

Determination of protein concentration 

All experiments were performed in 20 mM sodium phosphate buffer, 
pH 7.0 except where specified. The concentration of protein was 
determined with a double beam spectrophotometer (Shimadzu UV-
2450 UV-vis Spectrophotometer) at 280 nm using specific absorption 
coefficient of 5.31 and alternatively by Lowry method [15].  

Characterization of TiO2NPs 

A homogeneous suspension of TiO2NPs was prepared by mixing 
dry powder in buffer at a concentration of 1 mg/mL. The 
suspension was sonicated for one hour using sonicator bath. A 
drop of NPs suspension was placed on carbon coated copper 
grid, air dried and then imaged with transmission electron 
microscope (JEOL, 2000FX, Japan) at an accelerating voltage of 
200 KV. Dynamic light scattering (DLS) size measurement was 
carried out at 830 nm by DynaPro-TC-04 DLS equipment 
according to the procedure described by Khan et al [16].  Fourier 
transform infrared (FT-IR) spectrum was recorded with Perkin 
Elmer Spectrum BX, FT-IR (USA) at room temperature. Dry 
powder of NPs was dispersed into KBr matrix, mixed well and 
palletized. The pellet was kept in IR path and spectrum was 
measured in a range of 400-4000 cm–1. 

HSA-NPs interaction studies 

HSA stock solution (5.0 mM) was prepared in 20 mM sodium 
phosphate buffer, pH 7.0 and diluted with the same buffer as per 
requirement. Protein concentration (25 μM) was kept constant 
throughout the study while NPs concentration varied from 0.2 to 2.0 
mg/mL. The reaction mixture was first equilibrated at room 
temperature for 1hr and then UV-vis and fluorescence spectra were 
recorded to monitor the interaction of NPs with HSA. 
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UV-vis and fluorescence spectroscopy 

The UV-vis absorption spectra were recorded with Shimadzu UV-VIS 
2450 spectrometer (Shimadzu, Kyoto, Japan) equipped with 1.0 cm 
quartz cell. The spectra were taken in the wavelength range of 250-
350 nm. For sample measurements, baseline was corrected with 
phosphate buffer, pH 7.0. Fluorescence analysis was performed with 
CARY-Eclipse spectrofluorometer (Varian, USA) equipped with a PC. 
Spectra were recorded at 37 ± 0.10 °C within the wavelength range 
of 300 to 450 nm, setting the excitation at 295 nm. The excitation 
and emission bandwidths were 5 and 10 nm, respectively. Each 
spectrum was scanned three times and finally average was used for 
plots and analyses.  

RESULTS AND DISCUSSION 

Characterization of NPs 

The TEM image of TiO2NPs is shown in Figure 1. It can be seen that 
the particle was slightly spherical with average diameter of ~32 nm. 
Some particles were larger in size because of the 
agglomeration/aggregation [17,18]. The size distribution of TiO2NPs 
was further checked with dynamic light scattering (DLS) particle 
size analyzer and found that the average hydrodynamic diameter of 
NPs was ~42 nm (Fig. 2).  

 

 

Fig. 1: Transmission electron micrograph of TiO2NPs. The image 
was recorded with JEOL, 2000FX transmission electron 

microscope at an accelerating voltage of 200 KV. 

 

Fig. 2: The hydrodynamic size determination of TiO2NPs by 
DynaPro-TC-04 DLS. 

The bigger size of NPs in hydrodynamic state is because of the 
aggregation in aqueous medium [19,20]. Figure 3 shows FT-IR 
spectrum of TiO2NPs. Absorption peaks at 3368 and 3770 cm-1 were 
corresponded to O-H stretching mode of hydroxyl group, indicating 
the presence of moisture in the sample [21]. A strong peak at 1638 
cm-1 attributed to the stretching of titanium carboxylate. The 

absorption bands below 1000 cm-1 represents the oxide lattice 
vibrations of TiO2 solid [22]. There was no C-H vibration band at 
3000-2700 cm−1 showed that the TiO2NPs was free from organic 
compounds. 

 

 

Fig. 3: FT-IR characterization of TiO2NPs. Spectrum was 
recorded by Perkin Elmer, Spectrum BX, FT-IR instrument by 

KBr pellet method at room temperature. 

 

UV-vis spectroscopy 

UV-vis absorption spectroscopy is an effective and simple tool used to 
explore the structural changes in proteins [23]. The absorption spectra 
of HAS, Titrated with various amounts of TiO2NPs is shown in Figure 4. A 
strong absorption peak of human serum albumin was observed at 280 
nm due to the presence of aromatic amino acids for instance Phe, Tyr 
and Trp [24]. The absorption maxima of protein were decreased 
continuously with increasing concentration of NPs, indicating that some 
disturbance was occurred in the microenvironment of protein. This 
might be due to alteration of polypeptide chain which resulted in the 
conformational changes of protein [25]. 
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Fig. 4: UV-vis absorption spectra of HSA were recorded in the 
presence of varying amount of TiO2NPs. The protein 
concentration was kept constant (25 µM) while NPs 

concentrations (a→k) varied as 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 
1.6, 1.8 and 2.0 mg/mL. 

Fluorescence Spectroscopy 

Although, numerous techniques are available for protein ligand 
interaction studies but investigation of changes in the fluorescence 
intensity of protein due to quenching of ligand is a very important 
method [26, 27]. HSA has only one tryptophan residue present in the 
subdomain IIA [28]. The fluorescence intensity of HSA at 295 nm is 
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because of the tryptophan (Trp) moiety which is extremely sensitive 
to the local environment. Therefore, a trivial change in the 
microenvironment either by ligand binding or conformational 
transition would significantly quench it. The fluorescence quenching 
study of proteins in the presence NPs showed the relative 
accessibility of particle to the chromophore residue of protein [29]. 
The result showed that the fluorescence maximum intensity of 
protein decreased progressively with the increasing concentration 
of TiO2NPs (Fig. 5). This indicates that the NPs strongly quench to 
the chromophore residue of protein. The possible quenching 
mechanism was determined by fitting the dependence of Fo/F on 
TiO2NPs concentration based on a Stern-Volmer equation 

Fo/F = 1+ Ksv [Q] = 1+ kqτo [Q] 

where Fo and F are the fluorescence intensities of proteins in the 
absence and presence of NPs, respectively, Ksv is the Stern-Volmer 
quenching constant, [Q] is the molar concentration of TiO2NPs, kq 
stands for bimolecular quenching constant and τo is the average life 
time of HSA, is10-8 s [30].  

 

Fig. 5: Effect of TiO2NPs on the fluorescence emission spectra of 
HSA. The concentration of protein was 25 µM while NPs 

concentrations (a→k) varied as 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 
1.6, 1.8 and 2.0 mg/mL. 
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Fig. 6: Stern-Volmer plot for the binding of TiO2NPs with HSA. 

The result showed that plot of Fo/F versus [Q] was linear and Ksv 
value derived at 37 °C was 1.3x103 M-1 (Fig. 6). Earlier studies 
showed that the binding of nanoparticles with HSA resulted in 
changes of fluorescence maxima of protein [31,32]. There are two 
main quenching mechanism includes dynamic and static. The former 
occurs when high energy quenchers collide with the excited-state 
fluorophores and brings it to the ground state while in static 
quenching a complex is formed between quenchers and ground-
state fluorophores [33]. 

CONCLUSION 

In the present study, the interaction of the HSA and TiO2NPs was 
analyzed by UV-vis, and fluorescence spectroscopic techniques. Size 
of NPs was determined by DLS and TEM and found that the average 
size was ~32 nm. The conformation of HSA was changed in the 
presence of NPs as the UV-vis absorption as well as fluorescence 
spectra of protein were decreased with increasing concentrations of 
NPs. Furthermore, no spectral shift was observed in both the UV-vis 
absorption and fluorescence emission spectra revealed that NPs 
interacts to the protein away from Trp residue. The Stern-Volmer 
result indicated that the intrinsic fluorescence of HSA was quenched 
through static mechanism.  
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