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ABSTRACT 

The conversion of the sessile epithelial cells to the motile mesenchymal phenotype (EMT transition) involves the characteristic switching of E-
cadherin to N-cadherin and is a “signature-like event”, involving the TGF1-mediated pathway, in the process of invasion and metastasis of prostate 
cancer cells –a process commonly observed in other cancer cells. The transcriptional epigenetic repression of E-cadherin is associated with and 
regulated by the expression of ZEB1 – zinc finger homeo-domain transcription repressor, which in turn, is regulated by specific microRNAs. The role 
of IGF-1, correlatable with ZEB1, through equivocal, may have an important staging-dependent differential role in prostate cancer. Other 
transcription factors (Snail, Slug & E-47), when expressed, induce, among other signaling molecules, the expression of IGF-1 and Wnt-5. This, in 
turn, causes E-cadherin repression. One of the major, common downstream pro-survival effector protein is PI3K/Akt and is regulated both by the 
Ras as well as the TGF-1 pathways. This pivotal protein is known to protect the cells against TGF1-mediated apoptosis and plays an important 
role in EMT and metastasis. Repression of E-cadherin, is accompanied by the Twist1-dependent expression of N-cadherin. Corroborative evidence 
supports the abnormal activation of the Wnt/ catenin pathway and this pathway has been strongly implicated in prostate cancer invasion and 
metastasis pathways while catenin-independent pathways have also been reported apart from important epigenetic mechanisms regulating the 
inhibitors of the pathway like (Wnt inhibitory factor-1 -WIF-1). This review provides the reader with an update on the role of important signaling 
molecules and a better molecular understanding of cadherin switching – lessons that can be applied in cancer biology and chemoprevention by 
ethno-pharmacological and bio-pharmaceutical approaches. 
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INTRODUCTION 

Prostate Cancer, more precisely prostate adeno-carcinoma, is one of 
the most commonly diagnosed cancers in men (globally), and one of 
the leading causes of cancer-related deaths in western countries 
with the incidence being lower in Asia. However, the changing 
lifestyle and the westernization in terms of increased consumption 
of fatty food and obesity, apart from improvements in diagnosis and 
life expectancy, has contributed to the rising incidence of prostate 
cancer in developing countries. Further, an unfavorable stage 
distribution has also been reported[1],[2][3] Since this disease is the 
outcome of a complex interplay between environmental factors as 
well as the underlying genotype, race and ethnicity are important 
considerations in the evaluation of gene-gene and gene-environment 
interactions[4]. This changing risk profile is also mirrored in the 
decrease in the risk between Asian immigrants and natives in the 
developed countries [3]. Deaths due to prostate cancer occur mostly 
due to metastases formed by the tumor cells at secondary sites, 
particularly bones. Prostate carcinoma forms metastases at 
secondary sites in a well recognised pattern which involve the axial 
skeleton and local lymph nodes[5][6]. Metastases are seen in other 
sites as well such as lungs, brain and liver, but to a lesser extent 
[6][7]. Skeletal metastases formed by prostate cancer are more 
frequently osteoblastic in nature and is known to follow an order in 
terms of frequency with differences in the stage-dependent 
distribution in the different regions of the spine. This prelidiction for 
the spinal localization, early in the metastatic process, is consistent 
with the reported backward spread via the veins in addition to the 
involvement of the vena cava-based process[8][9].  

The propensity of prostate cancer cells to metastasize to secondary 
organs has been explained by a number of hypotheses. Batson 
proposed that retention of prostate cancer cells to bones might be 
due to the retrograde flow of prostate cancer cells in veins[10][11]. 
The famous “Seed and Soil” hypothesis for metastasis of cancer 
proposed by Paget suggests that the micro-environment of the 
secondary site (soil) determines the selectivity of the cancer cells 
(seed). This theory still holds forth today, as the potential of a tumor 
cell to metastasize to a secondary site is dependent on its 

interactions with the micro-environment of secondary site as well as 
on factors, which promote tumor cell survival, angiogenesis, 
invasion and metastasis[12][13]. Also, there is evidence of prostate 
cancer cells in their journey towards acquiring the metastatic 
phenotype, become osteoblastic, through inductive influences with 
bone stromal cells. This leads to an alteration in critical transcription 
factors (Cbfa and MSX) which, in turn, can favor the expression of 
genes like osteopontin (OPN), osteocalcin (OC) and bone 
sialoprotein (BSP)[14][15]. There are certain common steps in the 
metastatic cascade that must occur in all forms of cancer. These 
sequential and selective steps, with certain stochastic components, 
involve the loss of cell adhesion at a primary site, invasion, 
migration, and survival and growth of tumor cells at a secondary site 
with heterogeneity, both within a single cell and between 
metastases, as one of its hallmark features[16][17]. The very first 
requirement for a cell to metastasize is that it loses its adhesion with 
surrounding cells. Loss of cell adhesion at a primary site is believed 
to be mediated by Epithelial-Mesenchymal Transition, where the 
epithelial cells loses their cell-cell junctions and characteristic 
features and become more motile [18]. In this regard, they re-active 
an embryonic program, wherein the sessile epithelial cells acquire 
mesenchymal features and become motile. Further, conversion 
renders the transformed cells with stem cell-like properties 
(resistance to therapy and apoptosis, apart from a decrease in 
senescence as well as the ability to evade the immune system) with 
the acquisition of the invasive phenotype being important for 
metastasis to occur[19],[20]. Cadherin switching is one of the aspect 
of epithelial-mesenchymal transition, where cells switch expression 
of their characteristic cadherins and express unusual cadherins at 
adherans junctions which affect the phenotype and behaviour of the 
cells due to a change in the isoform of the cell adhesion 
protein[21][22][23]. Loss of E-cadherin with increase in expression 
of N-cadherin is the most remarkable event occurring when a tumor 
cell acquires metastatic properties[24][25]. 

Cadherins 

Cadherins are the major cell adhesion molecules. They are calcium-
dependent adhesion molecules and play a crucial role in the spatial 
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segregation of cell types and organisation of different tissues during 
embryonic development[26][27][28]. Cadherins interact with other 
cadherins on adjacent cells by a complex of proteins called catenins. 
The catenins bind to the actin cytoskeleton of the cell. The cadherin-
catenin complex forms the classic adherans junctions which 
integrate the epithelial cells in a mechanical unit. Cadherins join cells 
together by homophillic binding, binds to the same type of cadherin 
on another cell. Cell adhesion by cadherins is mediated by both the 
homophillic binding of extra cellular domains and binding of 
cytoplasmic domain of cadherin with actin cytoskeleton[29][30]. 
Homophillic binding between the extracellular domains of cadherins 
is initiated and stabilized by binding of Ca2+[31][32]. E-cadherin, also 
known as uvomorulin, is expressed on all the early embryonic cells 
of mammals. Later its expression is restricted to epithelial cells. 
Mesenchymal cells, which are less polarized and more motile than 
epithelial cells, express N-cadherin (neural cadherin) and various 
other cadherins such as R-cadherin and cadherin-11[33][34][35]. 
VE-cadherin is expressed specifically by endothelial cells at the 
junctional complex. Endothelial cells also express N-cadherin whose 
function is unknown as they are not expressed at the junctions. E-
cadherin is expressed by epithelial cells where it provides the 
mechanical strength to the tissue, however many epithelium-derived 
cancer cells loose the expression of E-cadherin[36][37][38]. 
Enzymatic activity is not found in classical cadherins and catenins 
but in adherans junctions, they can associate with kinase and 
phophatase enzymes such as Fer and PTP1B[39][40]. Adhesion of E-
cadherin activates phospatidylinositol 3-kinase (PI3-K) and 
Akt/protein kinase B[41]. Akt is a serine/threonine kinase which is 
activated by growth factors and integrin adhesion. Akt plays a 
regulating role in various metabolic pathways and apoptotic 
pathways. Phosphorylation of threonine 308 (Thr-308) and serine 
453 (Ser-473) by 3-phosphoinositide dependent kinase 1 or 
phosphoinositide dependent kinase 2 results in activation of 
Akt[42]. Upon activation, Akt phosphorylates various substrates that 
suppress apoptosis. When a cell receives apoptotic signals, cell fate 
is determined by the balance between pro-apoptotic and anti-
apoptotic proteins of the Bcl 2 family genes. The pro-apoptotic 
proteins of Bcl-2 family includes Bad, Bik and Bid and the anti-
apoptotic proteins include Bcl-2[43] and Bcl-xL [44]. Formation of 
homodimers of Bcl-2 in mitochondrial membrane prevents the 
activation of caspase-9 while formation of heterodimers of Bcl-2 and 
Bad activates caspase-9[45]. Regulation of apoptotic pathway by Akt 
involves the phosphorylation of Bad on Serine 136 thereby 
preventing the formation of heterodimers in mitochondrial 
membrane[46]. 

N-cadherin is typically expressed by mesenchymal cells which are 
more motile in nature than epithelial cells. Studies have reported 
unusual expression of N-cadherin in epithelium derived tumors and 
this upregulation of expression of N-cadherin promotes cell motility 
and invasiveness[47][48]. This shift in the expression of cadherins 
from E-cadherin to N-cadherin occur during gastrulation where it 
affects the phenotype of participating cells and helps in the 
separation of different types of cells, for example, a shift in 
expression from E-cadherin to N-cadherin helps the segregation of 
neural tube from the epithelium [49][50]. 

Cadherin switching and its role in prostate cancer metastasis 

Cadherin switching usually refers to shifting of E-cadherin 
expression to N-cadherin expression but also involves conditions 
where N-cadherin expression is upregulated without a significant 
change in expression of E-cadherin and also situations where other 
cadherins like R-cadherin, P-cadherin, T-cadherin and cadherin-11 
etc, are co expressed with E-cadherin[51][52][53]. Cadherin 
switching has been reported to be an important event occurring 
during metastatic progression of a tumor by enhancing the 
invasiveness of the tumor cells[54][55][56][57]. Decrease in 
expression of E-cadherin and increase in N-cadherin expression has 
been observed in various metastatic tumors. Studies on prostate 
cancer cell lines have also reported upregulation of N-cadherin 
expression that might mediate a homotypic adhesion between 
prostate cancer cells and stromal fibroblasts and facilitate 
metastasis[58]. Invasion of prostate cancer proceed through the 
surrounding stroma, migration to the perineural space and finally 

penetrate the capsule to escape from the primary location[59][60]. 
In addition to facilitating the escape from prostate gland N-cadherin 
expression might also aid the invasion of local blood vessels by the 
tumor cells. As endothelial cells also express N-cadherin in extra-
junctional spaces, with an unclear role[61], a homotypic interaction 
between prostate cancer cells and endothelial cells promote 
metastasis by allowing access to the blood vascular system, possibly 
involving the IL-6-TGF--MMP-9 pathway, as demonstrated by ex 
vivo cell culture experiments[62]. Cadherin switching, decreased 
expression of E-cadherin and increased expression of N-cadherin, 
was observed in LNCaP-19 tumor cells, as the tumor progressed 
towards a stage of androgen independency suggestive of a 
correlation between cadherin switching, invasiveness and androgen 
independency in prostate cancer[63]. Studies have shown that 
apoptosis is induced in both normal and cancer cells, when cadherin 
adhesion is disrupted[64]. Also, increased Akt expression has been 
observed in androgen-independent metastatic prostate cancer 
cells[65]. 

In most of the epithelial malignancies, a key step in metastasis of 
carcinomas of breast and prostate is the transcriptional repression 
of E-cadherin gene[66]. Although the mechanisms which regulate 
the abnormal expression of N-cadherin in carcinoma progression are 
yet unknown, it has been shown that N-cadherin expression during 
epithelial-mesenchymal transition is induced by TGFβ1 through 
GTPase RhoA signalling[67] while at the later stages, prostate cancer 
cells are resistant to this growth factor[68]. A basic helix-loop-helix 
transcription factor Twist-1 which regulates the expression of E-
cadherin and increased expression of mesenchymal genes during 
morphogenesis has been shown to be up-regulated in breast and 
prostate carcinomas[69].  

A study on the role of Twist-1 in regulating N-cadherin expression 
has shown that increased accumulation of Twist-1 in nucleus results 
in β1 integrin mediated cell adhesion. Twist-1 directly binds to an E-
box cis-element located in the first intron of the human N-cadherin 
gene and initiates the transcription of N-cadherin[70]. N-cadherin 
also plays dual functional roles in homophillic cell-cell adhesion and 
regulation of apoptosis. Studies involving PC3 cell lines have shown 
that homophillic adhesion of N-cadherin is linked to Akt signalling 
and inhibition of mitochondrial apoptotic pathway. Homophillic 
adhesion between extracellular domains of N-cadherin provides 
specific signals that regulate the levels of Bcl-2 by recruitment and 
activation of PI3-kinase and phosphorylation of Akt which leads to 
phosphorylation of Bad at Ser-136 and stabilizes Bcl-2[71].  

Role of ZEB1 in promoting EMT in prostate cancer cells  

Zinc finger enhancer binding protein (ZEB1) is a zinc finger homeo-
domain transcription repressor and is known to regulate 
developmental processes like muscle, lymphoid differentiation and 
skeletal patterning[72]. ZEB1 expression has also been shown to be 
elevated in various malignancies like breast, lung and colorectal 
cancer [73][74][75]. It repress the expression of E-cadherin by 
interacting with CANNTG sequence in the promoter region and 
recruiting histone deacetylase, thereby resulting in chromatin 
condensation and gene silencing[72][73]. In-vitro studies to 
investigate the relationship between expression of ZEB1 and 
prostate cancer, using metastatic prostate cancer cell lines DU-145, 
PC-3, ARCaPE and ARCaPM and poorly tumorigenic cell line LNCaP as 
well as its bone- derived sub line C4-2B, has shown that ZEB1 mRNA 
and protein expression is undetectable in normal prostate cells, 
moderately expressed in low Gleason score tumors and highly 
expressed in tumors with high Gleason score, suggesting its relation 
with aggressiveness and grade of tumor.  

Expression of ZEB1 is dependent on MEK signaling as the inhibition 
of MEK/ERK reduces the expression of ZEB1 in ARCaPE cell lines. 
Inhibition of MEK/ERK also suppresses the expression of β-catenin 
(also reported to regulate cadherin-11), however, it does not have 
any effect on the expression of endogenous mesenchymal markers 
like fibronectin and vimentin. Inhibition of ZEB1 by using ZEB1-
siRNA revealed decreased migration rate in otherwise aggressive 
ARCaPM cell lines suggesting that that ZEB1 also plays a role in 
suppressing the expression of E-cadherin and promoting the 
expression of N-cadherin[76]. Specifically, it has been observed that 
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nicotinamide adenine dinucleotide (NAD)-dependent histone 
deacetylase (SIRT1) deacetylates histone H3, following recruitment 
to the E-cadherin proximal promoter by ZEB1. This, in turn, reduces 
the binding of RNA polymerase II to the transcriptional start site, 
ultimately suppressing E-cadherin transcription[77]. However, other 
experiments have demonstrated that exit from EMT involves an up-
regulation of E-cadherin, despite the persistent expression of ZEB1 
providing evidence for the need to use an appropriate model system 
for attempts to replicate E-cadherin expression in human 
cancers[78]. 

Expression of IGF is also correlated with the expression of ZEB1 in 
the serum of patients with high Gleason Score Prostate cancer, 
suggesting a role of IGF1 signaling in the over-expression of ZEB1. 
Highly aggressive cell lines like ARCaPM has a 2 fold increase in the 
expression of phosphorylated IGF-IRβ[79] Further, the expression of 
ZEB1 in MEK/ERK suppressed cell lines is restored on treatment 
with IGF-1 (a factor that also induces the expression of Twist and is 
known to promote EMT)[80]. While corroborative data indicate the 
involvement of IGF-1, via ZEB1, in prostate cancer initiation, a large 
study (ProtecT trial) which evaluated the relationship between 
circulating insulin-like growth factors (IGFs) and prostate cancer has 
found no role for circulating serum IGF-1 with reference to this 
cancer[81]. However, more recent evidence seems to indicate that a 
better evaluation of the nature of the relationship may be done by 
measuring the levels of distinct isoforms during the progression of 
prostate cancer[82] with suitable and acceptable histo-pathological 
correlates. 

Role of snail, slug and E-47 factors in EMT and metastasis 

Zinc finger factors Snail, Slug and basic Helix-Loop-Helix factor E-
47, like ZEB1, also plays an important role in EMT. These factors, 
when expressed, induce a similar kind of phenotype which exhibit 
complete EMT[83][84][85]. Gene profiling studies involving 
MDCK-Snail, MDCK-Slug and MDCK-E-47 cell lines have shown an 
up-regulation of transcription factor IGF-1, cell proliferation and 
signaling factor Wnt-5 and various other genes related to EMT, 
angiogenesis, metabolism, transport and basic cellular functions. 
About 36% of the EMT-related genes were coordinately regulated 
by all the 3 genes, while the remaining was regulated by one or 
more of the 3 afore-said transcription factors. Regulation of over-
expressed EMT-related genes in these cell lines is in a similar 
fashion by either of these factors provides evidence for their 
important role in EMT and imparting metastatic & invasive 
potential to tumorous cells[86].  

Apart from the insulin-like growth factors, hepatocyte growth 
factor[87], epidermal growth factor[88], fibroblast growth 
factor[89], the transforming growth factor[90] plays an important 
role in EMT processes [91]. miR-200 and miR-205 have been 
recently shown to modulate the function of ZEB1 and ZEB2 
(transcriptional repressors of E-cadherin gene expression), thereby 
playing an important role in TGFβ-induced EMT[92]. 

Role of TGFβ and oncogenic ras in EMT and metastasis 

Oncogenic Ras (normally mitogenic) and Transforming Growth 
Factor-β (TGFβ) (normally growth inhibitory) and TGFβ 
Receptor are known to play important roles in EMT and 
metastasis. TGFβR signaling is required for EMT, invasion and 
metastasis in cancer cell through a Rho-dependent mechanism as 
mentioned earlier[93][94][95]. However, controversial to this is 
the known, paradoxical role of TGFβ in tumor suppression by 
growth inhibition and it functions as a tumor suppressor 
gene[96]. Downstream signaling pathways of oncogenic Ras are 
complex and involve many feedback loops as well as cross-talk 
with other pathways. It is mediated through Raf/MEK/ERK 
signaling and is required for TGFβ-induced EMT and metastasis. 
In addition, the activation of PI3K (phosphatidylinositol 3 
kinase) – another TGFβ-regulated pathway, by downstream 
signaling of Ras oncogene, protects the cell from TGFβ induced 
apoptosis, thereby suggesting that tumor metastasis and EMT 
depends on mutual harmony between expression of TGFβ and 
PI3 Kinase[97][98][99]. 

Role of Wnt in EMT and metastasis  

Gene profiling studies of various cancer cell lines have revealed an 
up-regulation of cell proliferation and signaling factor WNT-5. Wnt 
(wingless type) pathway plays a central role in the development of 
tissues during embryonic stages. It has also been shown that 
abnormal activation of Wnt pathway is involved in rendering 
metastatic potential and invasiveness in Prostate cancer 
cells[100][101]. Wnt pathway participates in cell invasion, 
proliferation, metastasis and angiogenesis by the regulation of target 
Wnt genes. Earlier, it was believed that activating mutations in β-
catenin were the dominant mechanism in activation of Wnt in 
cancerous cells[102] but studies have shown that despite presence 
of these downstream activating mutations, presence of secreted Wnt 
antagonists like secreted Frizzled-related protein (sFRP)family, 
Dickkopf (Dkk) family and Wnt inhibitory factor-1[103][104][105] 
can suppress Wnt signaling suggestive of an autocrine Wnt signaling 
involved in tumor progression[106][107]. Corroborative evidence 
has been provided for the role of -catenin (mRNA & protein levels), 
at the level of the cadherin-11 3’UTR, even though -catenin-
independent regulation of cadherin-11 has also been observed[108]. 

WIF-1 has been shown to inhibit the growth of various tumors and 
its expression was observed to be downregulated in 64% of primary 
prostate cancer specimens[109][110]. Studies using PC3 cancer cell 
lines revealed that inhibition of WIF-1 in most prostate cancer cells 
is due to hyper-methylation of its promoter[111]. Ectopic expression 
of WIF-1 in prostate cancer cell lines results in the upregulation of 
epithelial markers and increase in the protein levels of E-cadherin 
and keratin-18 as well as downregulates mesenchymal markers N-
cadherin, fibronectin and vimentin, thereby resulting in the reversal 
of EMT.  

Thus modulation of EMT markers is associated with the inhibition of 
Wnt signaling by WIF-1[112]. Inhibition of Wnt signaling down 
regulates the expression of Slug/Twist transcription factors, which 
are known to promote EMT. Restoration of WIF-1 in PC3 cell lines, 
thus resulted in the complete reversal of EMT, by inducing the 
expression of epithelial markers E-cadherin and keratin-18 and 
suppression of mesenchymal markers N-cadherin and vimentin, 
suppression of cell motility by down regulation of matrix 
metalloproteinases-2 and 9 and down regulation of transcription 
factors Slug/Twist[113]. Such mechanistic insights, in addition to 
those provided by E-cadherin conditional knock out and cadherin-11 
knock-out animals, provide opportunities for development of 
molecules (like dietary polyphenols), that can potentially be used for 
the reversal of EMT[106] and cause the induction of programmed 
cell death or apoptosis[114].  
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