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ABSTRACT 

B-cell Lymphoma Extra Large (Bcl-xL) belongs to B-cell Lymphoma two (Bcl-2) family and owing to its anti-apoptotic role in many cancers, is 

proven to be an attractive target for anti-cancer therapy. Different classes of potent anti-Bcl-xL small molecules inhibitors have been discovered, 

and both three-dimensional (3D) and two-dimensional (2D) Quantitative Structural Activity Relationship (QSAR) approaches have been used to 

study and predict the biological activities of new inhibitors prior to their synthesis.  

Objectives: This study was aimed to generate new candidate small inhibitory molecules against Bcl-xL by using G-QSAR analysis of known Bcl-xL inhibitors.  

Methods: In the present study, we used group-based QSAR (G-QSAR)—a novel fragment-based method—to develop QSAR models from known Bcl-

xL inhibitors. A set of Bcl-xL inhibitors adopted from extant literature was fragmented into three common fragments, and a pool of 214 descriptors 

was calculated for each one.  

Results: Two models were obtained by using different combination of variable selection and model building method; stepwise-multiple linear 

regression (STP-MLR) and simulated annealing-multiple linear regression (SA-MLR). STP-MLR was found to be the best mode, with r2 = 0.80, q2 = 

0.70 and predictive r2 = 0.87.  

Conclusion: The G-QSAR results indicate that the generated models are statistically significant and can be used for design and generation of new 

potent inhibitors.  

Keywords: G-QSAR, Bcl-xL inhibitors, 2D descriptors, Simulated annealing, Multiple regression method.  

 

INTRODUCTION 

Bcl-2 family of proteins plays a pivotal role in cancer survival by 

suppressing the pro-apoptotic proteins, increasing the cancer cell 

growth rate and increasing chemo resistance [1]. 

Bcl-xL is one of the Bcl-2 family members, found to be over-

expressed in many lung cancer cases [2]. It is primarily composed of 

seven helices α1 to α7, whereby the hydrophobic binding pocket is 

formed by helices α5 and α6 [3]. Various studies show that targeting 

Bcl-xL by small molecules results in the arrest of cancer cell growth 

[4-6]. Various Bcl-xL small molecules inhibitors with potential 

biological activity against cancers have been designed and 

synthesized. In addition, computer aided drug design (CADD) 

approaches, including conventional 2D and 3D QSAR methods, have 

been performed and extensively utilized to obtain insights on 

improving the biological activities of Bcl-xL inhibitors [7, 8]. 3D 

QSAR applies the QSAR theory with consideration of three 

dimensional structures and protein ligand binding, whereby it 

depends on the conformers for ligand alignment [9]. However, 

limitations of 3D QSAR include difficulty in interpreting descriptors, 

limitation to only congeneric series of compounds and 

inapplicability of developed models to the design of new ligands 

[10]. An advanced method in computational drug design, group-

based quantity structural activity relationship (G-QSAR) can be used 

to overcome the shortcomings of 3D QSAR. The method can also be 

used for non-congeneric molecules, as it does not depend on 

conformation and alignment of small molecules ;thus, the developed 

models can be used to design new ligands [10]. In this study, we 

used G-QSAR to generate models from non-congeneric series of 

compounds that have been previously investigated in several 

studies. Here, the G-QSAR models were used to successfully predict 

the biological activity of Bcl-xL inhibitors and generate highly potent 

Bcl-xL inhibitors. Two best models (SA-MLR and STP-MLR) were 

obtained by using different combinations of data and variable 

selection methodologies as well as a model-building method. 

MATERIALS AND METHODS 

GQSAR- Data mining and Fragmentation  

Bcl-xL inhibitors were sourced from Binding Database website. 

This is a free database that provides measured binding affinities 

of interactions between small drug-like molecules and proteins 

considered to be drug targets [11, 12]. Initially, 321 compounds 

from various literature sources [13-22] were downloaded in SDF 

format and subsequently filtered based on their drug-like 

properties according to Lipinski rules of five [23]. The final 

number of compounds used for G-QSAR after filtration was 128. 

However, in order to develop statistically significant models, 

different compound combinations were used in the training and 

test sets.  

Molecular Design Suite (VLifeMDS 4.2, from VLife Sciences 

Technologies Pvt. Ltd., India) was used to perform G-QSAR. The 3D 

compound structures were optimized by conjugate gradient method 

of Merck Molecular Force Field (MMFF) with 0.01 kcal/mol value of 

convergence in order to minimize their energy [24].  Based on the 

structures, the compounds were classified in different scaffolds, 

including [1,3]dioxolo[4,5-i]phenanthridine; 2,3-dihydro-1-

benzofuran-3-one; 3,4,5-trihydrocyclopenta[c]quinolines; benzene-

1,2-diol; carbamoylmethyl 2-hydroxy ethanoate; N-

(benzenesulfonyl) benzamide; naphthaline-1,6,7-triol and 15-thia-

12,17-diazatetracylo[8.7.01,10
.02,7.012,17]heptadeca-1(10),2(3),4,6,16-

penten-13-one.  A common fragmentation pattern was identified 
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within all selected molecules, which included three fragments for 

each molecule (as indicated in Fig 1) 

i. R1: the terminal region of molecule attached to R2 

ii. R2: the part of the molecule that links R1 and R3. It can be single or 

multiple rings or single rigid chain 

iii. R3: The terminal region of molecule attached to R2 

 

Fig. 1: Fragmentation pattern of the compounds 

Molecular Descriptor Calculation 

The calculations performed included 462 molecular descriptors, 

including physicochemical, retention index (chi), atom count, path 

count, estate numbers, atomic valence connectivity index (chiV), 

electro-topological, polar surface area, etc. All descriptors with 

constant values amongst the dataset were deleted, resulting in final 

346 unique descriptors that were subsequently subjected to QSAR 

analysis.  

Creation of Training and Test Sets 

Sphere exclusion method was used for creation of training and test 

sets. For both SA-MLR and STP-MLR models, sphere exclusion values 

were 1.6. To further gain confidence that the training and test set 

have uniform representation of molecules and examine the 

reliability of the data selection method, different statistical 

parameters (unicolumn statistical analysis) of each generated set 

(maximum value, minimum value, average and standard deviation) 

were calculated [25].  

Variable Selection Method  

Robust model generation is contingent on wise selection of variables 

and model building methods. In this study, simulated annealing (SA) 

and stepwise-forward (STP) methods that have the ability of 

selecting multiple variables were used for variable selection, 

coupled with multiple linear regressions (MLR) for model building.  

Simulated Annealing 

Simulated annealing (SA) is a virtual process that simulates the real 

annealing technique, whereby the material is heated and cooled by 

controlling temperature in order to increase the size of its crystals 

and reduce their defects which depend on the thermodynamic free 

energy [26]. It is a global and iterative combinatorial optimization 

method that does not concur with the first encountered variable 

configuration. Simulated annealing mimics the physical process in 

which the system is melted at a very high temperature and then 

cooled slowly until a steady state is reached [27]. It was applied to 

select the suitable independent variable combinations from the 

calculated descriptors pool. In short, system points (descriptors) 

and cost functions (configuration energy) configuration were 

optimized [26]. The configuration of the system points was signified 

by Boltzaman probability factor of distribution, which correlated to 

the configuration energy (E) and applied temperature (T) [28], as it 

is known that lowering the temperature leads to the decrease in the 

system E states. During the simulation, at a certain temperature, a 

population of subset of descriptors (problem configurations) is 

generated and the iterative process is continued until an optimal 

solution, defined by Metropolis algorithms, is found [26]. In this 

procedure, one descriptor was randomly displaced and energy state 

difference between two configurations (∆E= E_new - E_old) was 

calculated. Thus, when the difference was less or equal to zero (∆E ≤ 

0), the new configuration was accepted and used as starting point 

for the next iteration. Furthermore, when the energy differences 

between the two configurations was more or equal to one ∆E ≥ 0, the 

new descriptor was used for new displacement[29]. In the QSAR 

context, squared correlation coefficient of the regression (r2) serves 

as cost function, while selected descriptors in final equation of the 

QSAR model represent the system configuration. The aim of QSAR is 

identifying the descriptor combination with high r2 value.  

Stepwise-Forward 

Stepwise-forward variable selection method allows the development 
of a model through modifying the specifications of the trial model, 

one independent variable at a time, by adding or removing of the 
predictor variable using stepping criteria, F. This procedure was 

repeated until no more variable was left outside the mode created. 
Stepwise forward starts without predictors (descriptors) in the 

model. The value of the calculated r2 is used to evaluate the available 
descriptors, so that increasing the number of descriptors will lead to 

an increase in the value of r2, until it meets the statistical criteria for 
the inclusion into the model, i.e. the significance level for the 

increase in the r2 produced by addition of the descriptor.  

The analysis thus terminates when there is no predictor (descriptor) 

that meets the preset criteria. Second step of this method continues 

if predictor is being added and involves the re-evaluation of 

available predictors that are not yet incorporated into the model. 

Once the predictor that increased r2 the most is identified, it is added 

and this process is repeated until no more predictors that satisfy the 

criteria to be in the entry exist [30]. 

Model Building 

Both models were created by using multiple linear regression 

method (MLR). MLR estimates the values of the regression 

coefficients by applying the least squares curve fitting method[31]. 

Regression equation is given by  

� =  �� ∗ �� + �	 ∗ �	 + �
 ∗ �
 +  � 

where Y is the dependent variable, the bi are regression coefficients 

for corresponding 

X (independent variable) and c is a regression constant or 

intercept[31]. 

Finally, two best models obtained have the combinations of SA-MLR 

and STP-MLR. Considering the number of molecules and complexity 

of the developed models, several descriptors were selected from the 

initial descriptor pool. 

Model Evaluation and Validation 

The developed QSAR models were evaluated and validated 

internally and externally in order to determine their robustness. The 
models were evaluated based on n, number of molecules; k, number 

of variables; and r2, coefficient determination. Leave-one-out 
internal validation was carried out, yielding the value of q2 and for 

external validation. Moreover, compounds in the test set were 
predicted by using models generated by the training set and this is 

represented by the value of pred_r2. Finally, estimated standard 
error of the models and validation values were calculated and the 

best models were selected based on their corresponding r2 and q2 
values [10, 25]. 

RESULTS AND DISCUSSION 

This G-QSAR study produced two best models based on the 

statistical significance, namely SA-MLR and STP-MLR models. These 

models were used to provide insight into the role of molecular 

properties on the biological activities of Bcl-xL inhibitors. 
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Statistical Analysis of the Models  

As filtration of the compounds using the rule of five eliminated some 

compounds, 126 compounds were left. The training and test sets 

selection of compounds for each model varied in terms of 

dissimilarity value and resulted in different number of sets. Activity 

prediction and residual between the two values are given in Table 

1a and Table 1b for SA-MLR model and Table 2a and Table 2b for 

STP-MLR model.  

In order to obtain statistically significant values for SA-MLR and 

STP-MLR models, 6 and 2 outliers were deleted respectively, as their 

values were too far from the norm, which can affect the real 

statistics of the dataset. These outliers are x/y relation outliers, 

which were detected by comparing actual (x) and predicted activity 

(y) based on the two models [32]. Distribution of the molecules in 

both sets followed good criteria of data selection and this is proven 

by uni-column statistics for both training and test sets (Table 3). 

  

Table 1: Unicolumn Statistics 

 SA-MLR (SE 1.6) STP-MLR (SE 1.6) 

 Training Test Training Test 

Average 1.245 1.862 1.245 1.922 

Maximum 3.201 2.706 3.201 2.706 

Minimum 0.963 0.983 0.963 0.963 

Std. Dev 0.486 0.542 0.486 0.505 

Sum 138.205 20.482 138.205 28.834 

 

Firstly, the averages of the respective test sets for the two models 

were slightly higher than the training set average, indicating the 

presence of a greater number of active than inactive molecules. 

Secondly, activity average and standard deviation of both sets were 

very similar, implying that activity is equally distributed in both 

training and test sets. Thirdly, the sum of the inhibitory activity of 

the training set is greater than that of the test set, which suggests 

that all representative points of training set are well distributed 

within the entire data (Fig 2a and Fig 2b). A further indication that 

the test set lies within the training set is the fact that the maximum 

value in the training set was greater than the maximum in the test 

set and the minimum value of the test set was greater than the 

corresponding value in the training set [10].  

Two models developed in this study are statistically significant with α < 

0.000001 and parameters of each model are presented in Table 4.

 

 

Fig. 2a: Fitness plot for SA-MLR model (actual versus predicted activity), 2b; Fitness plot for STP-MLR model (actual versus predicted activity). 

 

Table 2: Statistical Analysis of Model SA-MLR and STP-MLR 

  SA-MLR STP-MLR 

training/test set 111/11 111/15 

Degree of freedom  95 93 

 r2  0.7768 0.79860 

 q2  0.6766 0.7033 

 F test  22.0390 21.6904 

 r2 se  0.2472 0.2373 

 q2 se  0.2976 0.288 

 pred_r2  0.9113 0.8708 

pred_r2se  0.2514 0.3105 
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Model SA-MLR 

SA-MLR model was built by combination of simulated annealing (for 

variable section) and multiple linear regression method (for model 

building).This model can be expressed mathematically using the 

equation given below. 

PIC = 1.3796 R1-chiV3Cluster - 0.0108 R1-

PolarSurfaceAreaIncludingPandS - 0.0914 R1-SaaOE-index - 0.3423 

R1-SdssCE-index -0.1383 R1-SsCH3count - 0.2156 R1-SsFcount + 

0.1277 R2-chi3 - 0.5757 R2-SaaNHcount + 0.4926 R2-SdScount - 

0.0860 R2-SssNHE-index - 0.1539 R3-chi4pathCluster + 0.2167 R3-

SaaNHE-index + 0.4595 R3-SaasN(Noxide)count - 0.3001 R3-

SdsNcount + 0.3636 R3-SsClE-index + 1.2152 

SA-MLR model is considered statistically significant with r2 value of 

0.78, q2 of 0.68 for internal validation and external validation (pred_ 

r2) of 0.91. Fifteen descriptors were selected to describe this model, 

as shown in Fig 3, where 40% (6 descriptors) originated from 

fragment R1, four were from R2 and the remaining five descriptors 

from R3. 

Model STP-MLR 

PIC = 0.3055 R1-6ChainCount - 0.0466 R1-chi0 - 0.0036 R1-

PolarSurfaceAreaExcludingPandS - 0.0439 R1-SaaOE-index + 0.1198 

R1-SaasCE-index -0.3073 R1-SdssCE-index + 0.1348 R2-chi2 -0.1255 

R2-SaaaCcount - 0.6744 R2-SaaNHcount + 0.9290 R2-SdSE-index - 

0.1033 R2-SssNHE-index - 0.1678 R2-SulfursCount -0.0787 R3-chi3 

+0.8843 R3-SaaNHcount +0.4114 R3-SaasN(Noxide)count - 0.0719 R3-

SdsNE-index + 0.3721 R3-SsClE-index + 1.1083 

STP-MLR is the second model obtained in this work and was 

developed through the combination of stepwise forward and 

multiple linear regressions. Model’s equation indicates that there is 

approximately 80% (r2: 0.80) of total variance in training set with 

internal validation (q2) of 0.70 and external validation (pred_r2) of 

0.73. These statistics confirm that this model is significant and can 

be used to generate potential bcl-xL inhibitors. 

 

 

Fig. 3: Contribution plot of SA-MLR 

Randomization test (Alpha Rand R^2: 0.0000) shows with > 

99.9999999% confidence that the model was generated through 

QSAR modeling, rather than randomly. The fragments R1 and R2 

contributed by 35% each, while fragment R3 contributed the 

remaining 30% of the activity (Fig 4).  

 

Fig. 4: Contribution plot of STP-MLR 

 

Description of the Models’ Descriptors 

Electrotopological State Index 

Electrotopological state indices (E-state) describe the electronic 

character and the topological environment of a skeletal atom in the 

molecule [33]. E-state indices of a certain atom in the molecule 

provide information on the electronic state of the atom (intrinsic 

state, I), which depends on π bonds, lone pair electrons and σ bonds 

that reflect quantitative availability of valence electrons for ligand-target 

interactions. E-index also explains the perturbation of the intrinsic state 

of a specific atom (ΔI) by all other atoms in the molecule, taking into 

consideration the distance between the atoms [34]. E-state indices can 

be calculated using the equation below [35, 36]. 

S =  I + ∆I =  I + � I −  I�
(d� +  1)�

�

���
 

Three nitrogen-based E-state descriptors, namely sssNHE-index, 

SaaNHE-index and SdsNE-index, were found to be responsible for 

activity variation in the two models. SssNHE-index can be defined as 

the E-state index of –NH group, which is attached to two single 

bonds. This descriptor contributes negatively to STP-MLR model and 

SA-MLR with ~-6.8% and ~-7.9% respectively. Therefore, it is not 

important for the model activity; nonetheless, decreasing the 

descriptor index at its respective fragments can improve the 

biological activity of Bcl-xL inhibitors. Fragment R2 in compound 

291 (Fig 5) shows this descriptor in which N1 and N4 atoms in 

piperazine ring are attached to two single bonds. Thus, it is 

recommended that the E-state index of this atom be reduced for 

better inhibition. SaaNHE-index is electrotopological index of –NH 

group binding to two aromatic bonds. This descriptor contributes 

5.0% to the activity in SA-MLR model. Thus, the presence of N-
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containing aromatic ring (such as indole, pyrrole and indazole) at 

fragment R3 is important for biological activity. For example, 

fragment R3 in compound 138 (Fig 5) shows this descriptor, which 

can be increased by replacing the 1,3-benzodiazole ring with 3H-

indazole in order to decrease the distance between two nitrogens 

(dij) for improved activity. Lastly, SdsNE-index describes the 

electrotopological indices of Nitrogen attached to one double bond 

and one single bond. This descriptor contributes negatively with ~-

3.1% to STP-MLR model (fragment R3) and is thus not crucial for the 

model activity. However, we can also use this negative contributor in 

order to improve compound’s activity. For example, in compound 

298 (Fig 5), N1 in pyridazine-3-one at fragment R3 has this 

descriptor. To improve the activity of this compound, we suggest 

replacing this pyridazine-3-one with pyrazine-2-one or pyridine-2-

one. 

Electrotopological indices of carbon atom, such as SaasCE-index and 

SdssCE-index, are other types of contributing descriptors within this 

subclass. SaasCE-index signifies the electrotopological indices of 

carbon attached to two aromatic bonds and one single bond. It 

contributes to STP-MLR model with ~5.5%. Based on the positive 

contribution of SaasCE-index, it can be concluded that the activity of 

compounds can be improved by increasing the value of this 

descriptor in respective fragments. For instance, activity of 

compound 165 (Fig 5), which has two instances of SaasCE-index at 

fragment R1, can be improved by adding more substituent to the 

benzene ring. This process will increase the value of this descriptor 

leading to improvement in the activity. In addition, due to its rigid 

hydrophobic surface, the R1 fragment containing this descriptor can 

contribute to hydrophobic interaction with the ligand binding 

pocket. SdssCE-index signifies the electrotopological state indices 

for number of carbon atom, connected to one double and two single 

bonds and it contributes negatively to both SA-MLR and STP-MLR 

models with ~-5.9% and ~-5.1%, respectively. This indicates that 

sp2 hybridized carbon (such as alkenes, carbonyl and imine) is not 

recommended. Fragment R1 in compound 303 (Fig 5) shows three 

examples of this descriptor, whereby, in order to improve the 

activity, it is suggested to replace carbonyl group with hydroxyl or 

methyl group at this fragment.  The descriptor SaaOE-index can be 

defined as the electrotopological state index for number of oxygen 

atom connected with two aromatic bonds. It contributes negatively 

to SA-MLR and STP-MLR model, with ~-8% and ~-3.7% 

respectively. Oxygen atom plays an important role in ligand-target 

interactions as hydrogen bond acceptor. However, this descriptor 

contributes negatively which means its presence at fragment R1 is 

not important for the model activity.  

SsClE-index represents the electrotopological indices for number of 

chlorine attached to a single bond. It is important for model activity, 

contributing ~6.5% to SA-MR and ~6.4% to STP-MLR model. For 

example, addition of more chlorine atoms that bind to carbon by 

single bond in benzene ring of fragment R3 of compound 109 (Fig 5) 

is suggested as an effective mechanism through which the activity of 

these models can be improved. Finally, SdSE-index explains the 

electrotopological indices of sulphur bound to one double bond, 

which contribute ~9% to STP-MLR model, indicating that the 

addition of sulphur that can bind to double bond is favorable to the 

activity. For instance, in fragment R2 of compound 117 (Fig 5), 

improved activity can be achieved by replacing carbonyl group at C3 

of the thiolane ring can with sulphanylidene group. 

Electrotopological State Number 

In addition to the electrotopological state index, electrotopological 

state number is another subclass of physicochemical descriptors 

that gives the total number of certain atom or atom group and their 

binding properties in the molecule [37]. SaaNHcount contributes 

negatively in fragment R2 of both models, with ~-2.8% and ~-3.2% 

for STP-MLR and SA-MLR, respectively. SaaNHcount is the total 

number of –NH group attached to two aromatic bonds. Pyrazole ring 

in compound 237 (Fig 6) shows the descriptor, indicating that this 

compound's activity can be improved by replacing this ring with 

cyclopenta-1, 3-diene for better inhibition. On the other hand, in 

model STP-MLR, SaaNHcount descriptor contributes ~5.9% to the 

activity in fragment R3. Thus, for example, the biological activity of 

compound 237 can be improved by replacing chlorobenzene with 

pyrazole ring at STP-MLR model fragment R3. 

 

Fig. 5: Examples of compounds representing electrotopological 

index descriptors 

  

SaasN(Noxide)count explains the electrotopological state indices for 

the number of nitro-oxide group connected via two aromatic and 

one single bond. This descriptor originates from fragment R3 and 

contributes to biological activity in SA-MLR and STP-MLR by ~4.4% 

and 3.9% respectively. It could be found in an aromatic ring with 

nitrogen attached to oxygen via single bond and become N-oxide 

ring, such as pyridine N-oxide. Furthermore, by adding more 

structure, such as pyridine N-oxide to fragment R3, biological 

activity can be improved in both models. 

Fragment R3 of model SA-MLR has SdsNcount descriptor that 

explains the total number of nitrogen atom binding to one single 

bond and one double bond. The descriptor contributes to the activity 

by ~-3.5% and is thus not favorable for model activity. Hence, its 

removal will improve the biological activity. 

SdScount from fragment R2 of SA-MLR signifies the total number of 

sulphur atom connected with one double bond and it contributes 

~5.8% to the activity. Sulphur can be potential hydrogen bond 

acceptor because of its electronegativity. Therefore, owing to the 

presence of sulphur in this fragment, hydrogen bond might be 

formed between the compound and the active site of Bcl-xL. For 

instance, in fragment R2 of compound 117 (Fig 6), in order to 

improve activity, carbonyl group at C3 of the thiolane ring can be 

replaced with sulphanylidene group. 

SsCH3count signifies the total number of –CH3 group attached to 

one single bond and contributes by has ~-4.7% in R1 of SA-MLR. 

Its negative contribution indicates that branching is not favorable 

for the activity. Another descriptor found in R1 of SA-MLR is 

SsFcount describes the total number of fluorine atoms connected 

via a single bond. It contributes ~-3.3% to activity, indicating that 

the presence of fluorine is detrimental to the activity. SaaaCcount 

descriptor was found in fragment R2 of STP-MLR model and it 

signifies the total number of carbon binding via three aromatic 

bonds. This descriptor is found in fused aromatic chains, such as 

indole, indazole and purine, where the carbon between these fused 

rings is attached to three aromatic bonds. This descriptor 

contributes ~-3.9% to activity and is represented in fragment R2 

of compound 106 (Fig 6). Replacement of naphthalen-1-ol with 

phenol can be suggested in this case, as this might improve the 

activity of the compound. 
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Chi (Retention Index) 

Chi0, chi2 and chi3 descriptors represent the retention index by 

certain order derived directly from gradient retention times. This 

descriptor is referring to Kovats retention index (I), which is a 

characteristic of a gas chromatographed compound on a given 

column at a definite temperature [37]. Chi0, chi2 and chi3 signify 

retention index by zero, second and third order, respectively. Chi0 

from fragment R1 contributes negatively to STP-MLR model (~-

5.3%), while Chi2 from fragment R2 of the same model contributes 

by ~15.2% and is thus very important to the model activity.  

Finally, Chi3 from fragment R2 provides significant and positive 

contribution (~14.2%) to model SA-MLR. The retention time 

indicates the hydrophobicity of the compound, whereby the higher 

the value of I, the high the hydrophobicity of the compound [37]. 

Therefore, fragment R2 of both models might interact with 

hydrophobic pocket of Bcl-xL protein [38]. 

 

Fig. 6: Examples of compounds representing electrotopological 

state number descriptor 

 

Polar Surface Area 

Polar surface area is one of the molecular surface area descriptors 

that are very important in understanding the structure and chemical 

properties of a molecule, affecting its ability to bind ligands, solvents 

and other biological molecules [37]. Two descriptors on this 

molecular surface are PolarSurfaceAreaIncludingPandS and 

PolarSurfaceAreaExcludingPandS, which describe the part of 

molecular surface associated or excluded with sulphur and 

phosphorous, including their bonded hydrogen atoms affecting the 

hydrogen bonding ability of the molecule. Both descriptors 

contribute negatively to the activity, whereby 

PolarSurfaceAreaIncludingPandS from fragment R1 of SA-MLR 

contributes by ~-13.2% and PolarSurfaceAreaExcludingPandS from 

fragment R1 of STP-MLR provides contribution of ~-3.6%. 

Therefore, in order to improve compound’s activity, removal of 

polar structure on fragment R1 is highly recommended. For 

instance, in compound 303 (Fig 7), carbonyl groups at fragment R1 

can be replaced with hydroxyl group for better activity.  

Cluster, Path Cluster and Chain Path Count 

Cluster, Path Cluster and Chain Path Count are molecular graph 

descriptors. These descriptors depict the connectivity of the atoms 

within the molecules regardless of bond types, angles, torsion, 

geometry, etc. [37]. From both models, three descriptors of 

molecular graph can be identified, namely ChiV3cluster, 

6ChainCount and Chi4pathCluster. ChiV3Cluster signifies the 

valence molecular connectivity index (MCI) of third order cluster. In 

this work, MCI was calculated from vertex degree δ of the atoms in H 

depleted molecular graph and is thus proposed to measure the 

molecular branching. ChiV3Cluster is the only positive contributor 

from fragment R1 in model SA-MLR, with ~10.4% contribution. 

Therefore, it is highly recommended to include this descriptor into 

its respective fragment, as it has the potential for improvement in 

biological activity of Bcl-xL inhibitors. 6ChainCount, which signifies 

total number of six-member rings in a compound, contributes to the 

activity by 7.5%, indicating that addition of any six-member rings, 

such as benzene or pyridine, to fragment R1 will improve the 

biological activity. Chi4pathCluster from fragment R3 signifies 

molecular connectivity index of fourth order path cluster. 

 

Fig. 7: Compound 303 represents polar surface area descriptor 

 

 Path cluster is a description that refers to the molecular graph with 

the vertex degree > 2 in the subgraph, while fourth order indicates 

the path number of length 4[37]. This descriptor contributes 

negatively to the activity of SA-MLR model (~-5.4%), thus its 

presence is not important. Compound 252 (Fig 8) has high value of 

Chi4pathCluster at fragment R3. Therefore, in order to improve its 

activity, it is recommended to replace naphthalene-2-ol with phenol 

ring, thus decreasing the number of possibilities of having fourth 

order path structure. 

 

Fig. 8: Compound 252 represents Chi4pathCluster descriptor 

 

Element Count 

SulphurCount signifies number of sulphur atoms in the fragment. 

Increasing the number of sulphur atom in the same fragment does 

not improve the activity, as this descriptor contributes by ~-5.2%. 

For instance, replacement of thiophene ring with pyrrole or furan at 

fragment R2 of compound 228 (Fig 9) will help improve the activity 

of this compound. 

 

Fig. 9: Compound 228 represents SulphurCount descriptor 

 

CONCLUSION 

The aim of this work was to obtain clues for designing new 

molecules using the novel G-QSAR method. The statistically 
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significant GQSAR models developed as a part of this study can be 

used for the prediction of the activity of an external set of 

compounds. The SA-MLR and STP-MLR models described here will 

be further used to generate compounds with improved biological 

activity against Bcl-xL protein with potential therapeutic uses in the 

treatment of various cancers that depend on Bcl-xL for survival.  
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