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ABSTRACT 

Nuclear transcription factor erythroid 2p45-related factor 2 (Nrf2) plays a crucial role in regulating phase-2 detoxifying/antioxidant gene induction. 
Under physiological conditions, NRF2 is mainly located in the cytoplasm. However, in response to oxidative stress, NRF2 translocates to the nucleus 
and binds to specific DNA sites, termed “antioxidant response elements” or “electrophile response elements,” to initiate the transcription of 
numerous cytoprotective genes. Many structurally diverse antioxidants derived from various sources of dietary phytochemicals have been found to 
activate this particular redox-sensitive transcription factor, thereby potentiating the cellular detoxification action of Nrf2.This review focuses on 
known phytochemical inducers and the mechanism by which they regulate antioxidant responsive element (ARE)/Nrf2-dependent detoxification 
genes. 
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INTRODUCTION 

Naturally occurring plant chemicals, known as phytochemicals, are 
found in various foods and food products and have been shown to 
play a protective role in the etiology of various diseases [1]. Upon 
entering a cell, these phytochemicals directly scavenge free radicals, 
leading to the generation of “chemical or electrophilic stress signals” 
that regulate various downstream cellular signaling pathways [2, 3]. 
For example, these phytochemical-induced stress signals activate 
the nuclear factor erythroid 2-related factor 2 (Nrf2). 

Nrf2 is an oxidative stress-dependent transcription factor that 
regulates numerous downstream targets, many of which are involved 
in cytoprotection[4]. Moreover, Nrf2 has emerged as a key player in 
the induction of a variety of detoxification enzymes, biotransformation 
enzymes, and xenobiotic efflux transporters [5].Oxidative or 
electrophilic stress signals activate Nrf2, which subsequently aids in 
the detoxification and elimination of potentially harmful exogenous 
chemicals and their metabolites [6]. Nrf2 is ubiquitously expressed in 
many different human tissues, with high levels of expression found in 
key detoxification organs, such as the liver [7, 8]. In these tissues, Nrf2 
has been shown to be the most prominent nuclear erythroid 2-related 
factor, compared to Nrf1 and Nrf3, functioning to activate and induce 
antioxidant responsive element (ARE)-mediated genes [9, 10]. 
Further, Nrf2 regulates more than 200 genes, which act to 
synergistically increase the efficiency of a cell’s defense system [11]. 
Structurally, Nrf2 is composed of six regions, called Neh (Nrf2-ECH 
homology) 1–6 domains, which are highly conserved across different 
species. The Neh1 domain contains the cap’n’collar (CNC) homology 
region and basic-leucine zipper domain [12], which is also found in the 
CNC family of transcription factors [12, 13]. Importantly, small 
masculoaponeuroticfibrosarcoma (Maf) proteins form a hetrodimeric 
complex with the Neh1 domain and bind to the AREs within gene 
promoter regions [14]. Several lysine residues in the Neh1 domain are 
acetylated by a co-transactivator, histone acetyltransferase 
p300/cAMP response element binding (CREB)-binding protein (CBP), 
which also regulates DNA binding [15]. Furthermore, overall protein 
stability is partially regulated through the binding of the ubiquitin-
conjugating enzyme UbcM2 to cysteine (Cys) 136 in the Neh1 domain. 
UbcM2 has a cysteine residue that functions as a redox sensor; by 
binding to and stabilizing Nrf2, it enhances the transcriptional activity 
of the protein during cellular stress [16]. 

Neh2 contains a degron that interacts with redox-sensitive Kelch-
like ECH associated protein 1 (Keap1), an adaptor protein for the 

Cullin 3-based E3 ubiquitin ligase complex that also functions as a 
repressor of Nrf2. The interaction of these two proteins under 
normal conditions results in rapid ubiquitylation and subsequent 
degradation by the proteasome with a half-life of approximately 10 
minutes [17]. Recently, it has been shown that two sites within the 
Neh2 domain of Nrf2, termed the DLG and ETGE motifs, mediate 
binding to the Keap1 double glycine repeats (DGRs) or Kelch repeats 
region [18, 19].Neh3, in turn, consists of the carboxyl-terminal 
region of the protein and is involved in the transcriptional activation 
of ARE-dependent genes [20, 21]. The Neh4 and Neh5 domains act 
cooperatively to bind another transcriptional coactivator, CBP [22]. 
Furthermore, a mutational study performed for the actin-related 
motif, termed DME, in the Neh5 domain showed a selective decrease 
in hemeoxygenase 1 (HO-1) expression; the expression of NAD(P)H 
dehydrogenase quinone 1 (NQO-1) or the glutamate-cysteine ligase 
modifier subunit (GCLM) was not affected [23]. While the Neh4 and 
Neh5 domains are critical in coordinating the transcriptional 
machinery necessary for ARE activation, other coactivators can also 
selectively affect gene expression.  

The Neh6 domain (amino acids 329–379) is essential in the Keap1-
independent degradation of Nrf2 that occurs in the nucleus of 
oxidatively stressed cells [21]. However, to date, the most studied 
regulatory mechanism of Nrf2 activation is its interaction with 
Keap1, a repressor protein essential for the rapid turnover of Nrf2.  
Under basal conditions, Nrf2 is sequestered in the cytoplasm by 
Keap1, which functions as an adaptor protein between Nrf2 and the 
N-terminal region of Cullin 3 (Cul3). This binding promotes the 
constant proteasomal degradation of Nrf2 [24]. Under conditions of 
cellular stress or in the presence of Nrf2 activating compounds, this 
degradation is hindered and Nrf2 translocates to the nucleus. Here, 
Nrf2 heterodimerises with small Maf proteins, which in turn 
facilitate the binding of Nrf2 to the ARE, a cis-acting enhancer 
sequence (TCAG/CXXXGC) in the promoter region of Nrf2-regulated 
genes [25, 26]. Keap1 binds to the Neh2 domain of Nrf2 and was 
initially identified by a yeast two-hybrid assay[20]. Keap1 protein is 
a cytosolic protein and is composed of five different domains: an 
amino-terminal region, a Broad complex, a Tram track and bric-a-
brac (BTB) domain, an intervening region (IVR), six Kelch/DGRs, 
and a carboxy-terminal region (CTR) [27]. While each domain has a 
specific purpose related to Keap1 function, the BTB domain plays 
two important roles. It is thought to serve as a dimerization domain, 
maintaining the dimer structure of Keap1 because mutation of 
Ser140 in this domain leads to the dedimerization of Keap1 and 
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subsequent release of Nrf2 [28]. Furthermore, the BTB domain also 
contains the binding site for Cul3 [29]. 

The DGR/Kelch domain, composed of six Kelch motif repeats, is 
required for the interaction of Keap1 with the actin cytoskeleton, 
which anchors Keap1 in the cytoplasm [30, 31]. The Keap1 
DGR/Kelch domain is also essential for Nrf2 binding as it interacts 
with the amino-terminal Neh2 domain [32]. Two proteins, p62 [33] 
and p21 [34], have been identified as inducers, which disrupt Keap1 
repressor function by interrupting DRG/Kelch domain-Nrf2 binding. 
p62 does this by binding to and/or interacting with eight amino 
acids in the DGR motif of Keap1, including Y334, S363, N382, and 
S602, leading to the separation of Nrf2 and Keap1 [33]. p21 
competes with Keap1 to directly bind the DLG and ETGE motifs of 
Nrf2 [34]. Additionally, some kinases can also be considered Nrf2 
inducers. For example, MAPK, PI3K, and PKC can all phosphorylate 
Nrf2 and change its conformation, preventing the association with 
Keap1 [35]. It is not surprising that the proteins in the PI3K and 
MAP kinase families lie upstream of Nrf2 activation as these proteins 
are highly sensitive to cellular stress and often determine the 
balance of pro-survival or apoptotic signaling cascades. By collaring  

Nrf2 and phase II enzymes into the cellular response to stress, these 
important signaling cascade proteins can help determine cellular 
fate under conditions of injury. Importantly, many of these inducers 
also function to block or modify active thiols. Keap1 contains many 
cysteine residues, 25 in mouse Keap1 and 27 in the human form, of 
which approximately one-third are cysteines with low predicted 
pKa[10]. These reactive thiols are excellent targets for electrophiles 
and can be modified in vitro by numerous different oxidants [36]. 
Indeed, several electrophilic reagents have also been shown to 
modify the thiols directly [37-40]. Covalent modification of the 
cysteine residues present in the Keap1 protein is believed to 
constitute a stress-sensing mechanism, and the covalent binding of 
several electrophiles, including sulforaphane, to the thiol group(s) 
has been observed in vitro [41]. 

Based on electrophile-mediated modification, location, and 
mutational analyses, it appears that three cysteine residues, Cys151, 
Cys273, and Cys288, are crucial for Keap1 activity [42]. Further, 
forced expression of recombinant KEAP1 in various cell lines has 
shown that mutants lacking these three cysteine residues are unable 
to negatively regulate NRF2 [42-45]. As a nucleophile, Cys151 is 
sensitive to many inducers and is therefore considered to be a stress 
sensor [46] and is a critical residue for a subset of Nrf2 activators 
[39, 47, 48]. Modification of Cys151 likely inhibits the Keap1-Cul3 
interaction and prevents the ubiquitination of Nrf2, resulting in the 
stabilization of Nrf2 [29]. Cys273 and Cys288, found in the IVR 
domain along with numerous other cysteines, are also indispensable 
for Keap1 activity [42, 46,47]. Oxidation of these cysteines changes 
the structure of Keap and reduces its affinity for Nrf2 [43]. 
Additionally, Keap1 structural changes caused by oxidization of 
these two cysteines may also dissociate Cul3 from Keap1, as the N-
terminus of the IVR domain is also a Cul3 binding site [44]. A 
relationship has been proposed whereby the conformational change 
of Keap1 induced by Cys151 alkylation might expose Cys273 and 
Cys288 for further alkylation, leading to total inactivation of Keap1 
[42, 49], but additional investigation into this phenomenon is 
necessary. Further, Keap1 Cys151 is the only cysteine consistently 
and highly modified by all of the phytochemicals tested thus far, 
including isoliquiritigenin, 10-shogaol, xanthohumol[50], and 
sulforaphane [51]. 

Dietary phytochemicals activate Nrf2 

Plants are an incredibly rich source of compounds that activate 
cytoprotective genes. The development of a simple microtiter-plate-
based assay [52] to assess the induction of the cytoprotective 
enzyme NAD(P)H): quinoneoxidoreductase 1 (QR1) in mouse 
Hepa1c1c7 cells has greatly facilitated the ability to screen for and 
identify cytoprotective phytochemicals. Furthermore, several plant 
families important for human dietary nutrition are also particularly 
rich in ARE inducers. These include curcumin, sulforaphane, 
quercetin, and tert-butylhydroquinone. 

Curcumin 

Curcumin, a bioactive polyphenol, is present in the rhizome of the 
plant Curcuma longa[53] and has been shown to be an effective 
anticarcinogenic, antiviral, antioxidant [54-57], and anti-
inflammatory substance in human and animal models [58, 59]. 
Further, the effects of curcumin have been extensively investigated 
in a number of cell culture models using liver cells [60], human 
lymphocytes [61], endothelial cells [62], renal epithelial cells [63], 
astrocytes [64], and murine splenocytes[65]. In the cell, curcumin 
acts as a direct and an indirect antioxidant as it scavenges both 
reactive oxygen and nitrogen species [66, 67] and has been shown to 
attenuate oxidative stress, inflammation, and insulin resistance by 
activating cytoprotective enzymes, such as glutathione-S-
transferase[68][68], γ-glutamyl cysteine ligase (γ-GCL), and HO-1, 
among others [69, 70]. Furthermore, the endogenous antioxidant 
defense mechanisms and activation of detoxification enzymes 
observed for curcumin have been shown to be modulated by 
transcription factors, such as Nrf2 [56, 71-73].  

Nrf2-regulated genes can be classified into phase II xenobiotic-
metabolizing antioxidant enzymes, molecular chaperones, DNA 
repair enzymes, and anti-inflammatory response proteins [74]. 
These proteins reduce electrophiles and free radicals to less toxic 
intermediates whilst also increasing the ability of the cell to repair 
any subsequent damage [69, 74-76]. In this regard, curcumin is able 
to induce protection and activate Nrf2-dependent protective 
responses in cell lines or animal models exposed to oxidative 
conditions [77]. 

Further, curcumin has been shown to induce GSTP1 expression with 
the involvement of transcription factor Nrf2 in human hepatic cells 
[78]. Dietary administration of curcumin elevated hepatic GST and 
NQO1, resulting in increased detoxification of benzo(a)pyrene-
treated mice [79]. Pretreatment with curcumin can also protect 
against H2O2-induced cell death in retinal cell lines 661W and ARPE-
19 by upregulating HO-1 and thioredoxin via Nrf2 [80]. Moreover, 
mice injected intraperatoneally with curcumin showed a twofold 
increase in total brain glutathione levels after treatment with 
buthioninesulfoximine[81]. Oral curcumin administration also 
resulted in enhanced nuclear translocation, ARE-binding of Nrf2, 
and a subsequent increase in the liver expression of HO-1, 
suggesting that curcumin has hepatoprotection potential in 
dimethylnitrosamine (DMN)–induced hepatotoxicity through Nrf2 
activation [72]. Curcumin also activates ARE-mediated expression of 
antioxidant defense genes in human monocytes via PKC-ᵹ, 
p38MAPK, and Nrf2 [82]. The ability of curcumin to reverse 
functional and structural alterations in rats with 5/6 nephrectomy 
was clearly associated with enhanced translocation of Nrf2, 
attenuation of oxidant stress, and preservation of the activity of 
several antioxidant enzymes [57]. Moreover, Khor et al. [83] 
demonstrated that curcumin, at least in part, had a chemopreventive 
effect on prostate cancer through Nrf2, while Carmona-Ramírez et 
al. [84] found that curcumin had a neuroprotective effect through 
Nrf2 activation and increased superoxide dismutase and glutathione 
peroxidase activity in rats with neurodegeneration.  

Sulforaphane 

Sulforaphane (SFN), 1-isothiocyanate-(4R)-(methylsulfinyl)butane, 
is a dietary isothiocyanate produced by myrosinase activity on 
glucopharanin, a 4-methylsulfinylbutyl glucosinolate present in 
cruciferous vegetables of the genus Brassica, which includes 
broccoli, Brussels sprouts, and cabbage [85]. SFN has garnered 
particular interest as an indirect antioxidant due to its extraordinary 
ability to induce expression of several enzymes via the KEAP1/Nrf2 
pathway [86, 87]. In diabetic rats, the antioxidant and anti-
inflammatory effects of SFN appear to be mediated through 
increased expression of Nrf2 and downstream targets HO-1 and 
NQO-1 and the reduction of NF-κB expression [88]. Treatment with 
SFN reduced the renal dysfunction and injury caused by ischemia-
reperfusion of the rat kidney. These effects were mediated by the 
induction of phase II enzymes by decreasing the Keap1 protein 
levels and increasing Nrf2 nuclear translocation [89]. A recent study 
has also shown that after long-term treatment with SFN, diabetic 
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mice exhibited significant renal prevention from nephropathy via 
induction of NRF2-mediated antioxidant pathway [90]. 

Furthermore, treatment with SFN prevented oxidative stress-
induced cytotoxicity in rat striatal cultures by increasing the 
intracellular GSH content via an increase in γ-GCS expression 
induced by the activation of the ARE/Nrf2 pathway [91]. SFN also 
functions in the endothelium, where it induces protective genes 
during injury and inhibits inflammatory genes via Nrf2 in vivo [92]. 
In the a rodent brain and microvasculature injury model, SFN has 
been demonstrated to induce Nrf2-driven genes and reduce brain 
damage following a traumatic brain injury [93]. Moreover, in a 
model of neonatal hypoxia-ischemia, pretreatment with SFN 
increased the expression of Nrf2 and HO-1 in the mouse brain and 
reduced infarct ratio [94].  

Bai et al. [95] investigated whether this compound can prevent 
diabetic cardiomyopathy. To do this, type-1 diabetes was induced in 
rats by intraperitoneal injections with low dose streptozotocin. 
Following SFN treatment, these diabetic rats showed beneficial 
results triggered by an upregulation in Nrf2 expression and 
transcription activity that was reflected by increased accumulation 
of nuclear Nrf2 and phosphorylation as well as increased mRNA and 
protein expression of downstream Nrf2 antioxidants. In vitro, SFN 
has also been shown to reduce the risk of tumorigenesis in breast 
epithelial cells through Nrf2 activation [96]. 

Notably, SFN increased both the mRNA and protein expressions of 
Nrf2 as well as the expression of the downstream target gene NQO-1 
in TRAMP C1 cells [97]. Baek et al. 2008 [98]further demonstrated 
the protective effects of SFN and an extract of young radish 
(Raphanussativus L.) cultivated with sulfur (sulfur-radish extract) 
for carbon tetrachloride–induced liver injury in mice. They showed 
that both SFN and the sulfur-radish extract ameliorated the carbon 
tetrachloride induced increase in the serum level of alanine 
aminotransferase, lipid peroxidation, and necrosis. This 
hepatoprotective effect was associated with liver phase II enzyme 
induction. Lii et al. 2010 [99] have shown that SFN also upregulates 
the expression of GST through the Nrf2 pathway in rat Clone 9 liver 
cells, while Ernst et al., 2011 have shown that SFN increases Nrf2-
dependent gene expression in murine cultured fibroblasts [100]. 

Quercetin 

Quercetin is a dietary polyphenol, predominantly present in citrus 
fruits and buckwheat. It is a multi-potent bioflavonoid with immense 
potential for the prevention and treatment of cancer [101]. 
Quercetin is capable of activating Nrf2 and upregulating phase II 
enzymes, such as NQO1, in HepG2 cells with an EC50 of 15 mM as 
measured using an ARE-luciferase reporter gene assay [102]. 
Interestingly, in hepatocytes, quercetin increased cellular Nrf2 level 
not only by inhibiting ubiquitination of Nrf2 but also by increasing 
the level of Nrf2 mRNA. Low levels (50 µM) of quercetin also 
provided marked protection of RAW264.7 macrophages from H2O2-
induced apoptosis through the upregulation of Nrf2-directed 
enzymes, including HO-1[103]. Recently, Yao et al. [104] observed 
that HO-1 upregulation by quercetin also protects human 
hepatocytes from oxidative stress. In this study, p38 and ERK, two 
players in the MAPK signaling pathway, mediate the quercetin-
derived Nrf2 translocation into nuclei and subsequent induction of 
HO-1 activity. 

tert-Butylhydroquinone 

tert-Butylhydroquinone (tBHQ) is a synthetic phenolic antioxidant 
that is widely used as a preservative to extend the shelf life of 
various foods. It has been well-established that tBHQ exerts its 
antioxidant function by increasing Nrf2 protein stability [105, 106]. 
Interestingly, tBHQ, like SFN, activates Nrf2 via inhibition of Keap1-
mediated ubiquitination through the modification of Cys151 [42, 
107]. Several studies have also used tBHQ as a positive control 
treatment while investigating Nrf2 activation and cellular signaling 
[108, 109]. Downstream genes, such as NQO1 and GST, are also 
affected by tBHQ, which was found to induce the synthesis of these 
factors in mouse liver and intestinal mucosa [110]. More recently, it 
was found that tBHQ prevents the deposition of amyloid β-protein 
after oxidative stress in NT2N neurons, a cell line model for 

Alzheimer disease, through the activation of Nrt2 [111], and 
provides effective prophylaxis against cerebral ischemia in vivo 
[112]. 

CONCLUSION 

It is apparent that phytochemicals play an important role in 
combating oxidative stress. In this review, we have given a number 
of examples wherein phytochemical stress signals initiate a cellular 
response through Nrf2. Although our understanding of the 
mechanism of action for dietary phytochemical is continually 
expanding, there is much left to learn. Future work will ideally focus 
on additional phytochemical isolation, characterization, and clinical 
application.  
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