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ABSTRACT 

Histone deacetylases are set of enzymes that have been of interest in drug discovery for the last more than 3 decades. They are responsible for 
cleaving of acetyl groups from acetyl-lysine residues in histones and various non-histone proteins. Histone deacetylase inhibition is a contemporary, 
clinically validated therapeutic tactic for cancer treatment. Hydroxamic acid derivatives are among the first compounds to be identified as histone 
deacetylase inhibitors, comprising of three structural units namely, the surface recognition domain generally a hydrophobic group, linker domain 
consist of linear or cyclic structures and zinc binding group. In the present review, we are focusing on vital aspects of histone deacetylases, their 
classification and importance of hydroxamic acid based histone deacetylase inhibitor as anticancer agent.  
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INTRODUCTION 

Histone deacetylases (HDACs) is identified as one of the promising 
goal for cancer treatment as many histone deacetylase inhibitors 
(HDACi) have passed into clinical trials for all tumors. Pursuing the 
completion of the human genome project, epigenetics has come out 
as a crucial area to understand how the genome translates its 
information. Two mechanisms have been distinguished to show 
important roles in the epigenetic regulation of gene transcription, 
namely histone modifications and DNA methylation [1]. These 
genomic modifications influence patterns of genetic regulation 
without varying the nucleotide sequence of the underlying DNA and 
are transferable from one cell generation to the next. Moreover, 
these active processes provide a mechanism by which an organism 
can react to environmental signals through changes in gene 
expression during cell growth and differentiation. Accumulating 
evidence indicates that deregulation of these epigenetic processes 
causes transcriptional repression of a subset of genes, which 
underlies the pathogenesis of many human diseases. In the past 
decade, considerable advancement has been made in understanding 
the causative relationship between aberrant epigenetic modification 
and tumorigenesis, which has resulted in to the Phase I and II 
clinical evaluation of HDACi [2-7] and too a smaller extent, DNA 
methyl transferase inhibitors [8] in solid tumors and hematological 
malignancies. 

HDACi hinder angiogenesis, arrest cell growth and lead to 
differentiation and apoptosis in cancer cells. HDACs catalyze the 
deletion of the acetyl group from the ε-amino groups in histone 
lysine residues. The acetylation and deacetylation plays an 
imperative role in transcriptional regulation of eukaryotic cells [9, 
10]. The acetylation state of the lysine residues is regulated by the 
action of two counteracting enzymes, the HDACs and the histone 
acetyl transferases (HATs) [2, 11-13]. HATs transfer an acetyl group 
from acetyl CoA to the ε-amino groups of a lysine residue of 
histones, while HDACs catalyze the hydrolysis of these acetamides 
by the removal of the acetyl group from the ε-amino groups of the 
lysine side-chains [14-16]. 

HDAC CLASSIFICATION 

Till date, 18 different members of HDACs have been recognized and 
divided into four different classes, Class I, Class II, Class III, and Class 
IV [17,18]. Class I with its subtypes HDAC1, 2, 3, and 8 are related to 
yeast RPD3 deacetylase are generally localized to the nucleus and 

are ubiquitously expressed in many human cell lines and tissues 
[19]. Class II includes six subtypes, which are divided into two 
subclasses, class IIa with HDAC4, 5, 7, 9, and class IIb with HDAC6 
and 10. Both subclasses show homology to HDA1. Class III, also 
known as the sirtuins are related to the Sir2 gene and include SIRT1-
7, and Class IV, which contains only HDAC11 has features of both 
Class I and II [20, 21]. 

HDAC INHIBITORS  

A broad range of natural and synthetic derivatives have been 
identified to inhibit the activity of HDACs. The term HDACi is 
commonly used for compounds that target the classical HDACs 
(Class I, II, and IV), whereas the inhibitors of Class III HDAC are 
referred as sirtuins inhibitors. SIRTs are virtually unaffected by 
compounds that inhibit Class I, II, and IV HDACs [22-24]. HDACi 
causes growth arrest, differentiation and apoptosis in cancer cells. 
As these processes are affected by malignant transformation, HDACi 
are currently in various stages in clinical development as 
antineoplastic drugs [15, 16, 23, 25]. HDACi share some common 
features to interact with different portions of the catalytic channel of 
the enzyme. The structural details of the HDACi enzyme interactions 
have been determined in studies of a homolog of HDAC (histone 
deacetylase like protein (HDLP) with the HDACi trichostatin A and 
suberoylanilide hydroxamic acid [26]. According to X-ray 
crystallographic findings and the SAR of the various inhibitor 
classes, it was suggested that HDACi pharmacophore comprises of: 

(a) A metal-binding domain, which interacts with the active site, 

(b) A surface recognition domain, which interacts with residues on 
the rim of the active site 

(c) A linker domain, connecting metal binding domain and surface 
recognition domain [27] 

HDACi can be divided into several structural classes including 
hydroxamic acids, cyclic peptides, aliphatic acids, benzamides and 
electrophilic ketones.  

Hydroxamic Acid Analogues 

Hydroxamic acid agents are among the first compound to be identified 
as HDACi. A hydroxamic acid is a class of chemical compounds sharing 
the same functional group in which a hydroxylamine is inserted into 
a carboxylic acid. Its general structure is R-CO-NH-OH, with an R as an 
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organic residue, a CO as a carbonyl group, and a hydroxylamine as NH2

chelators
-

OH. They are employed as metal  [28, 29]. In industry, 
e.g. benzohydroxamic acid and others in the reprocessing of irradiated 
fuel [30]. 

This structural design for HDACi has been derived from the X-ray 
crystal structure of a bacterial HDAC homologue (HDLP) with bound 
TSA (Figure 1). It has been put forwarded that the active site 
consists of a narrow tubular pocket with a zinc atom inside. Based 
on these examinations, it has been consistent that modifications of 
the connection unit and hydrophobic group, which are assumed to 
interact with the entrance area of the catalytic pocket, will provide 
prospects for discovering potent and possibly selective HDACi [31]. 

The proposed mechanism of the hydrolysis of acetyl-lysine by the 
class I/II HDAC enzymes is based on the studies that the HDLP active 
site has features of both metallo and serine protease active sites. 
Several studies confirmed that both SAHA and TSA make contact 
with the same residues in the edge channel and active site regions of 
the protein. In addition, hydrogen bonding between the hydroxamic 
acid inhibitor functionality and the imidazole groups in the histidine 
(H131, H132), aspartate (D166, D173) salt bridges, along with 
hydrogen bonding of the active site tyrosine (Y297) to the 
hydroxamate carbonyl, present additional rationale for the potent 
inhibitory activity [32].  

Trichostatin A (TSA) was the first hydroxamate natural product 
discovered to inhibit HDACs directly [33]. TSA and trichostatin C 
were isolated as fungistatic antibiotics from Streptomyces 

hygroscopicus [34]. Trichostatic acid, the corresponding carboxylate 
was shown to be ineffective as an HDACi, indicating that the 
hydroxamate is prerequisite for activity.  
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Fig.1: The essential structural feature of SAHA, an US FDA 
approved HDACi 

SAHA (vorinostat) is the one of most clinically advanced HDACi [35-
37]. A large number of preclinical studies demonstrated that SAHA 
could induce growth arrest, differentiation and apoptosis in a wide 
range of cancer cell lines [35, 38]. Vorinostat was approved by the 
US FDA in 2006 for the therapy of the cutaneous manifestations in 
patients with advanced refractory cutaneous T-cell lymphoma [37]. 
PXD-101 also known as Bellinostat is currently in phase II trial 
evaluation and is undergoing further studies with an oral 
preparation [39]. PXD-101 and NVP-LAQ824, identified by Novartis 
are proved to be effective HDACi in nanomolar concentrations. Other 
significant hydroxamic acids as anticancer agent include oxamflatin, 
scriptaid, LBH, PCI-24781 (Figure-2). 
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Fig. 2: Presence of vital structural features in clinically tested hydroxamic acid based HDAC Inhibitors. A = surface recognition; B = linker, 
and C = metal binding group 

 

CONCLUSION  

As motivated by the assumed translational potential of HDACi in 
cancer therapy, how these agents facilitate their anticancer action 
has been the emphasis of several contemporary studies. However, 
still a major challenge is lack of in-depth understanding of the 
biological function of the structurally diverse HDAC isoforms and 
their participation in the process of tumorigenesis. Hydroxamic acid 
analogues have exhibited greater inhibitory activity against the 
several HDACs. There are lots of possibilities to discover the novel 
HDACi by optimization of surface recognition moieties. A number of 
hydroxamic acid based HDACi are in various phases of clinical trial. 
It can be anticipated that these scientific endeavor will result in 

discovery of novel hydroxamic acid based HDACi as anticancer agent 
in the years to come. 
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