ANTIMICROBIAL ACTIVITY OF BINARY AND TERNARY COMPOSITES OF CHITOSAN AMENDED WITH NYLON 6 AND MONTMORILLONITE CLAY

N. PRAKASH, RAJKUMAR E*, SUDHA P.N, UDAYA PRAKASH N.Kb

* Department of Chemistry, Sree Sastha Institute of Engineering and Technology, Thiruvellore, Tamil Nadu 600123, India, b. Department of Chemistry, Vel Tech Dr. RR & Dr. SR Technical University, Avadi, Chennai 600062, India, c. PG and Research Department of Chemistry, DKK College for Women, Vellore, India. Email: kpnaprasbl8@gmail.com

ABSTRACT

Objective: To evaluate the antimicrobial activity of binary and ternary composition of Chitosan along with Montmorillonite clay and Nylon 6 in various ratios and to identify a potential agent to use in an antimicrobial topical cream.

Methods: The antimicrobial properties using the following bacterial strains, i.e. Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa and the fungal strains, i.e. Aspergillus niger, Candida albicans and C. tropicalis were studied. Chloramphenicol and Ketoconazole were used as a control for bacteria and fungi respectively. The study was conducted using well diffusion method.

Results: Among the composites, Chitosan/Montmorillonite clay/Nylon 6 (2:1:1) has recorded the maximum zone of inhibition for Escherichia coli, Pseudomonas sp. Aspergillus niger, Candida albicans and C. tropicalis when compared to control. For Staphylococcus aureus, none of the compounds have provided any significant zone of inhibition.

Conclusion: The composite, Chitosan/Montmorillonite clay/Nylon 6 (2:1:1) can successfully used as a pharmaceutical agent in topical creams.

Keywords: Chitosan, Nylon 6, Montmorillonite Clay, Antibacterial property, Antifungal property.

INTRODUCTION

The studies of biopolymer films have received much attention because they are environmental friendly, alternatives to synthetic and non-biodegradable films. Chitosan is the deacylated form of chitin composed of glucosamine, which is one of the most abundant polysaccharides in nature [1, 2]. Due to its favorable properties such as enzymatic biodegradability, non toxicity, and biocompatibility, a variety of applications have been found either alone or blended with other polymers in the pharmaceutical industries [3-5]. Chitosan and its derivatives have been proposed as matrices in pharmaceutical formulations in the form of films, emulsions, troche, transmucosal devices and in drug delivery system [6-11]. At present, it has been commonly recognized that the biological activity of chitosan depends on its molecular weight, deacetylation degree, chitosan derivatization, degree of substitution, length and position of a substituent in glucosamine units of chitosan, pH of chitosan solution and the target organism [12].

Chitosan film containing bio-functional materials have been used as edible coatings for prolonged shelf life and preserve the quality of fresh foods [1, 3 and 13]. Due to its soluble nature in acidic solution, films can be readily prepared by casting or dipping, resulting in dense and porous structure [8]. Chitosan films have been tested as curative wound dressing and as scaffolds for tissue and bone engineering [7]. Recently many of the studies were reported on chitosan for its strong antimicrobial activity and antifungal activities [14-20]. The aim of the present work is to evaluate the antimicrobial activities of chitosan blended with clay and nylon 6 in different ratios.

MATERIALS AND METHODS

Preparation of chitosan

Chitosan (90%) procured from DNP International, Cochin was used to make all chitosan solutions. Chitosan solutions from 2 to 20 g/L were used for the experiments. The powdered chitosan was weighed and dissolved in 0.05 M or 0.01 M acetic acid.

Preparation of Nylon 6

Nylon 6 in pellet form was obtained from DuPont and had a molecular weight of 19,000. One gram of nylon 6 dissolved in 88 % formic acid is mixed with 25ml of deionized water as working standard.

Preparation of clay

The suspension of montmorillonite (MM) clay was prepared by mixing 1 g of clay in 25 ml of deionized water and stirring in moderate speed for 20 min.

Composition of Binary and Ternary composition of Chitosan

The polymer blends of different composition were prepared using different ratios as follows: chitosan/nylon 6 (1:1); chitosan/nylon 6 (1:2); chitosan/nylon 6 (2:1); chitosan/clay (1:1); chitosan/clay (1:2) and chitosan/clay (2:1). The ternary composition of the blends like, chitosan/nylon 6/clay (1:1:1); chitosan/nylon 6/clay (1:2:1) and chitosan/nylon 6/clay (2:1:1) were prepared.

Antibacterial and Antifungal activity

The assay is carried out by well diffusion method. Mueller Hinton Agar and Sabouraud’s Dextrose Agar were used to study antibacterial and antifungal activity [21]. The respective plates were spread with specific cultures using a swab and wells were bored in each plate at the diameter of 6 mm each. The wells were filled with 25 µg of the composites/ well. The plates with bacterial cultures were incubated at 37°C for 24 h and the plates with fungal cultures were incubated at 28°C for 72 h for evaluation. The development of the zone of inhibition was compared with negative control and the differences were recorded [22]. Chloramphenicol (30µg/disc) and Ketoconazole were used as positive control for bacterial and fungal species. The assays were performed in triplicate.

RESULTS AND DISCUSSION

Antimicrobial Activities

Among the binary composites, the results showed that Chitosan and Montmorillonite clay (2:1) as possessing better antimicrobial property towards all the microbes studied except that of Staphylococcus sp. when compared with other binary composites. This was followed by Chitosan and Montmorillonite clay (1:1) against Escherichia coli, Pseudomonas sp. and Aspergillus niger. Chitosan and Nylon 6 (2:1) showed better activity...
for the species of Candida following Chitosan and Montmorillonite clay (2:1) among the binary composites.

Among ternary composites studied, Chitosan, Montmorillonite clay and Nylon 6 (2:1:1) showed the best activities with all three types of composites studied. The composite has also superseded that of the control except for Staphylococcus sp. The details on the zone of inhibition recorded for both binary and ternary composites of Chitosan, Montmorillonite Clay and Nylon 6 at different ratio is presented in Table 1.

Table 1: Antibacterial activity of Chitosan, Montmorillonite clay and Nylon 6

<table>
<thead>
<tr>
<th>Microbial Species</th>
<th>E. coli</th>
<th>Pseudomonas sp.</th>
<th>Staphylococcus sp.</th>
<th>A. niger</th>
<th>C. albicans</th>
<th>C. tropicalis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloramphenicol</td>
<td>38±0.25</td>
<td>26±0.05</td>
<td>37±0.21</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(Positive Control - Bacteria)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ketoconazole</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>28±0.12</td>
<td>26±0.11</td>
<td>34±0.1</td>
</tr>
<tr>
<td>(Positive Control - Fungi)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1% DMSO (Negative control)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Binary Blends</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chitosan and Nylon 6 (1:1)</td>
<td>29±0.05</td>
<td>20±0.11</td>
<td>25±0.26</td>
<td>28±0.15</td>
<td>26±0.21</td>
<td>28±0.21</td>
</tr>
<tr>
<td>Chitosan and Nylon 6 (2:1)</td>
<td>19±0.21</td>
<td>16±0.24</td>
<td>21±0.05</td>
<td>36±0.11</td>
<td>33±0.12</td>
<td>36±0.15</td>
</tr>
<tr>
<td>Chitosan and Nylon 6 (1:2)</td>
<td>5±0.12</td>
<td>5±0.12</td>
<td>5±0.12</td>
<td>27±0.11</td>
<td>24±0.11</td>
<td>23±0.12</td>
</tr>
<tr>
<td>Chitosan and Montmorillonite clay (1:1)</td>
<td>38±0.05</td>
<td>31±0.11</td>
<td>32±0.26</td>
<td>37±0.11</td>
<td>32±0.12</td>
<td>35±0.11</td>
</tr>
<tr>
<td>Chitosan and Montmorillonite clay (1:2)</td>
<td>25±0.12</td>
<td>23±0.21</td>
<td>33±0.32</td>
<td>29±0.22</td>
<td>24±0.11</td>
<td>22±0.11</td>
</tr>
<tr>
<td>Chitosan and Montmorillonite clay (2:1)</td>
<td>39±0.21</td>
<td>36±0.24</td>
<td>32±0.05</td>
<td>38±1.12</td>
<td>36±0.12</td>
<td>37±0.11</td>
</tr>
<tr>
<td>Tertiary Blends</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chitosan, Montmorillonite clay and Nylon 6 (1:1:1)</td>
<td>39±1.05</td>
<td>32±0.02</td>
<td>34±0.22</td>
<td>38±1.12</td>
<td>34±0.31</td>
<td>36±0.31</td>
</tr>
<tr>
<td>Chitosan, Montmorillonite clay and Nylon 6 (2:1:1)</td>
<td>27±1.22</td>
<td>26±0.02</td>
<td>35±0.31</td>
<td>31±1.02</td>
<td>27±0.22</td>
<td>25±0.33</td>
</tr>
<tr>
<td>Chitosan, Montmorillonite clay and Nylon 6 (2:2:1)</td>
<td>39.5±1.25</td>
<td>38±0.01</td>
<td>33.2±1.25</td>
<td>38±0.12</td>
<td>37±0.22</td>
<td>38±0.22</td>
</tr>
</tbody>
</table>

CONCLUSION

The present study was conducted to find out the potency of binary and ternary composites of Chitosan, Montmorillonite clay and Nylon 6 at different composition. The study concludes that the composite, Chitosan/Montmorillonite clay/Nylon 6 (2:1:1) possess better antimicrobial activity when compared with standards. Thus, the composite can be successfully employed in the pharmaceuticals like band aids and antimicrobial topical creams.

ACKNOWLEDGEMENTS

The authors are thankful to Dr. Rangarajan, Chancellor, Veltech Dr. RR Dr. SR Technical University, Avadi, Chennai for providing the facility and encouragement.

REFERENCES