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ABSTRACT 

Objective: ADAM12 has been implicated in the pathogenesis of various cancers, liver fibrogenesis, hypertension, and asthma, and its elevation or 
decrease in human serum has been linked to these and other physiological or pathological conditions. Therefore ADAM12 is considered as a 
significant drug target for various diseases. The experimental 3D structure of ADAM12 is not available. Therefore, present study aims in developing 
homology model using 3 different softwares and evaluating the best model. 

Methods: Homology based 3D model of ADAM12 is constructed using three different softwares namely PRIME, I-Tasser and Easy Modeller. All the 
predicted models were analyzed and validated by PROCHECK, PROSA, Errat, Verify 3D and Prove. 

Results: Homology model predicted from prime showed top results with 84.2% of the residues in the most favorable region, 14.7% in the allowed 
region, 0.8% in the generously allowed region and 0.3% in the disallowed region. The RMSD between the modeled and the template structure was 
found to be 0.18 Å. Model developed by prime had the best LGscore of 3.79 and MaxSub of 0.09 indicated that the model is very good. ERRAT, 
Verify_3D, Prove, ProSA and dDFIRE also confirmed the same. 

Conclusion: In this study, homology model was developed for ADAM12 using PRIME, I-Tasser and EasyModeller. The models developed were 
validated using ERRAT, Verify_3D, Prove, ProSA and dDFIRE. These analyses validated the homology model produced by PRIME is best, robust as 
well as reliable enough to be used for future study. 
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INTRODUCTION 

ADAM12 is a member of the greater ADAM family of enzymes: these 
are multifunctional, generally membrane-bound, zinc 
proteases. They are about 800 amino acids long and have a unique 
domain organization, containing pro-metalloprotease, disintegrin, 
cysteine-rich, transmembrane, and cytoplasmic domains. The 
ADAMs has structural similarity and 30% sequence identity to snake 
venom metalloproteases (SVMPs), which cause hemorrhage in snake 
bite victims. Yagami-Hiromasa et al searched for homologs of 
ADAMs 1 and 2 in a mouse myogenic cell line and identified ADAM 
12 (meltrin α)[1]. ADAM 12 showed strong expression in neonatal 
skeletal muscle and bone. In mouse C2 myoblast cultures, the 
expression of ADAM 12 became apparent upon muscle cell 
differentiation [2]. This protein is known also as Meltrin-
alpha (approved gene symbol: MLTNA) [3]. 
ADAM12S and ADAM12L are short and long form, respectively, of 
the protein and arise by alternative splicing. ADAM12S is a secreted 
form of the protein consisting of pro, catalytic, disintegrin, cysteine-
rich, and EGF domains, whereas the other variant is a membrane 
form. ADAM12 has been implicated in the pathogenesis of various 
cancers, liver fibrogenesis, hypertension, and asthma, and its 
elevation or decrease in human serum has been linked to these and 
other physiological/pathological conditions [4].  

The ADAM12 protein is synthesized as a zymogen in which the 
prodomain maintains the metalloprotease domain in a latent form. 
After activation the metalloprotease domain of ADAM12 is 
catalytically active. ADAM12-S degrades gelatin, collagen type 4, 
and fibronectin but not collagen type 1 or casein [5]. ADAM12 
appears to be involved in myogenesis and to be required 
for myotube. The protein is expressed largely in mesenchymal 
cells that give rise to skeletal muscle, bones and visceral organs and 
may play a role also in osteoblast differentiation and/or function. 
Significant levels of ADAM12 are expressed in a variety of 
haematological malignancies, including leukemia, 
erythroleukemia, lymphoma and myeloma[6]. Roy et al (2004) have 
purified ADAM12 from the urine of breast cancer patients and 
reported that increased urinary levels of this protein correlate with 
breast cancer progression [7]. Hepatocellular carcinomas and liver 
metastases display higher ADAM-12 than normal liver and benign 

tumors in liver cancers. ADAM12 expression is associated with 
tumor aggressiveness and progression [8]. 

ADAM12 overexpression results in increased tumor take, tumor size, 
and metastasis in vivo. These findings suggest that ADAM12 may 
represent a potential therapeutic target in breast cancer [9]. In 
bladder cancer ADAM-12 levels are unregulated in urine of patients 
with bladder cancer compared with urine from healthy individuals. 
After removal of the tumor by surgery, levels of ADAM-12 in urine 
decrease. ADAM-12 is therefore an interesting biomarker of bladder 
cancer and hepatic cancer. [10]. ADAM-12 expression is also 
correlated with tumor aggressiveness and progression, 
Glioblastoma. Membrane-anchored ADAM-12 is overexpressed in 
glioblastomas compared to non-neoplastic brain tissues [11].  

While a full three-dimensional structure of ADAM12 is not yet 
available, Wewer et al. have unraveled the gross structural features 
of the full length ADAM12-S molecule via electron microscopy. The 
electron microscopic data suggest that the overall protein molecule 
has a 

“Compact clover shaped architecture composed of four globular 
domains, one of which is the prodomain” [12]. 

The experimental 3D structure of ADAM12 is not available therefore 
there is need for the creation of the homology model. Computational 
approaches can provide homology modeling, which can be further 
used in molecular dynamic simulations, and automatic docking in 
order to demonstrate the function of proteins and to illustrate the 
mode of substrate binding. These types of methods can be used 
successfully in enzyme–substrate systems and can provide useful 
information for future studies. The main objective of the present 
work is to introduce a three-dimensional (3D) model of ADAM12 
using 3 different software’s namely PRIME (Schrodinger Inc) 
[13,14], EasyModeller [15,16] and I-Tasser [17,18,19], comparing 
the results and using the best model developed for future study. 

MATERIALS AND METHODS 

Homology modeling 

Homology modeling refers to constructing an atomic-resolution 
model of the query (Target) protein from its amino acid 
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sequence and an experimental three-dimensional structure of a 
related homologous protein called template protein. The query 
protein is aligned with the template and the secondary structure is 
predicted between the two and the model is developed. The primary 
sequence of the target ADAM12 was obtained from UniProtKB 
database with a sequence id: O43184, entry name ADA12_HUMAN, 
sequence length 909aa [20]. Extracellular Topological domain of 
ADAM12 consists of Disintegrin, EGF like, cysteine switch and 
cystine rich domain, which is 501 amino acid length, was used for 
modeling.  

 

Fig.1: Multiple sequence alignments of the target sequence 
O43184 with the template sequence (2ERO, 3K7L and 3G5C). 

 

The accuracy of the homology model is related to the degree of 
sequence identity and similarity between template and target. The 
selection of a suitable template and an optimal sequence alignment 
is essential to the success of homology modeling. BLASTp [21] was 
performed to find a template structure of a known protein from 
Protein Data Bank (PDB). Template identification was performed 
using PSI-BLAST [22] to search the non-redundant PDB database. 
[23] (http://www.rcsb.org/pdb/). The top 6 hits retrieved by the 
BLASTp program are shown in (Table 1). Multiple sequence 

alignment of the query and templates were shown in (Fig. 1). The 
crystal structures of vascular apoptosis-inducing protein-1 (PDB 
ID:2ERO) and D-domain of snake venom metalloprotease (PDB ID: 
3K7L) identified as best with 39% and 38 % sequence identity, 
therefore both the structures were used as templates to generate the 
model in Prime. The model was generated using Prime and then the 
energy was minimized using the OPLS (optimized potentials for 
liquid simulations) 2005 force-field. The other two softwares used 
to generate the homology model are I-TASSER and EasyModeller. I-
TASSER implements multiple threading algorithms and iterative 
structure assembly simulations to find optimal sub-fragments within 
a database structures or within a user-specified structure. 
EasyModeller is new GUI for Homology modeling using modeller 
with Tab based logical modeling and extensive error handling steps. 
EasyModeller allows loading unlimited number of templates with an 
inbuilt alignment editor. Inbuilt DOPE profile Viewer, 
Ramachandran Plot viewer, Loop modeling, and basic model 
optimization makes it user friendly software. 

Table 1: Best Hit obtained by PSI-BLAST with the ADAM12 
Sequence ID: O43184 

Accession Max 
score 

Total 
score 

Query 
cover 

E value Identity  

2ERO_A 325 325 88% 5.00E-90 39% 
3K7L_A 314 314 88% 2.00E-86 38% 
3DSL_B 305 305 89% 6.00E-84 39% 
2DW0_A 303 303 89% 2.00E-83 38% 
3HDB_A 303 303 88% 4.00E-83 39% 
3G5C_A 295 295 95% 2.00E-80 36% 

Assessment of homology model  

The validation of structure model obtained from Prime, I- Tasser 
and EasyModeller was performed by inspecting the backbone 
conformation of the modeled structure was calculated by analyzing 
the phi (φ) and psi (ψ) torsion angles using PROCHECK, as 
determined by Ramachandran plot. The results were also confirmed 
using Structural Analysis and Verification Server (SAVES). The ProQ 
web server [28] (available at Stockholm Bioinformatics Center 
website: http://www.sbc.su.se/∼bjornw/ProQ/ProQ.html) was also 
used. With ProQ different ranges are given for a model as 
LGscore>1.5 fairly good model, >2.5 very good model, >4 extremly 
good model, MaxSub>0.1 fairly good model, >0.5 very good model, 
>0.8 extremly good model. ERRAT is a protein structure verification 
algorithm that is especially well-suited for evaluating the progress of 
crystallographic model building and refinement. The program works 
by analyzing the statistics of non-bonded interactions between 
different atom types. This is extremely useful in making decisions 
about reliability. Verify 3D will provide you with a visual analysis of 
the quality of a putative crystal structure for a protein and analyzes 
the compatibility of an atomic model of the protein with its amino 
acid sequence. Prove Calculates the volumes of atoms in 
macromolecules. The PROSA test was applied to the final model to 
check energy criteria against the potential of mean force derived 
from a large set of known protein structures. 

DFIRE is a statistical, potential based program that uses a distance-
scaled finite ideal-gas reference state. DFIRE is used to assess non-
bonding interactions in the protein model. A lower energy indicates 
that a model is closer to the native conformation. The root mean 
square deviation (RMSD) between the main chain atom of the model 
and the template was calculated by superimposing the structure of 
the template on the predicted structure of ADAM12 in order to 
assess the reliability of the model using PyMol.  

RESULTS AND DISCUSSION 

Homology modeling using PRIME 

The model was generated based on the template 2ERO (vascular 
apoptosis-inducing protein-1) and 3K7L (two elapid snake 
venom metalloproteases), which has similar structural features 
with the query protein (Multiple sequence alignment Fig.1.). One 
advantage of prime over other software’s is modeling with the 
heteroatom. Therefore Metal ions like Zinc and calcium where 
also used in developing the model. The side chain coordinates 

http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&DYNAMIC_FORMAT=on&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=0.005&LINE_LENGTH=60&MASK_CHAR=2&MASK_COLOR=1&NCBI_GI=yes&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=BD96E55R014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=2&OLD_VIEW=false&DISPLAY_SORT=1&HSP_SORT=1
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&DYNAMIC_FORMAT=on&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=0.005&LINE_LENGTH=60&MASK_CHAR=2&MASK_COLOR=1&NCBI_GI=yes&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=BD96E55R014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=2&OLD_VIEW=false&DISPLAY_SORT=1&HSP_SORT=1
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&DYNAMIC_FORMAT=on&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=0.005&LINE_LENGTH=60&MASK_CHAR=2&MASK_COLOR=1&NCBI_GI=yes&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=BD96E55R014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=2&OLD_VIEW=false&DISPLAY_SORT=2&HSP_SORT=1
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&DYNAMIC_FORMAT=on&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=0.005&LINE_LENGTH=60&MASK_CHAR=2&MASK_COLOR=1&NCBI_GI=yes&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=BD96E55R014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=2&OLD_VIEW=false&DISPLAY_SORT=2&HSP_SORT=1
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&DYNAMIC_FORMAT=on&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=0.005&LINE_LENGTH=60&MASK_CHAR=2&MASK_COLOR=1&NCBI_GI=yes&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=BD96E55R014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=2&OLD_VIEW=false&DISPLAY_SORT=4&HSP_SORT=0
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&DYNAMIC_FORMAT=on&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=0.005&LINE_LENGTH=60&MASK_CHAR=2&MASK_COLOR=1&NCBI_GI=yes&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=BD96E55R014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=2&OLD_VIEW=false&DISPLAY_SORT=4&HSP_SORT=0
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for all non-identical residues were predicted using PRIME. Loop 
refinement of  ADAM12 (6 loops) was carried out and multiple 
loop conformations were constructed using Prime functionality. 
Scoring of these conformations was done by side-chain 
predictions and all-atom minimizations. After completion of 
model building calculations, the model was further optimized 
and minimized. The non-template regions were minimized [24]. 
The final model was energy minimized with a truncated-Newton 
energy minimization using OPLS_2000 all-atom force field [25] 
(Fig. 2A.). Every step was checked for improvement in SAVES 
server and the final model after refinement had the best scores 
which were used for further validation (Table 2).  

A. Prime B. I-Tasser C. Easy-modeller

C- Domain

N- Domain

Zinc

Calcium

 
Fig. 2: Ribbon diagram of the modeled ADAM12 with Prime, I-
Tasser and EasyModeller, α-Helices, β-strands and loops are 

colored red, yellow and green, respectively. 
 

Table 2: Comparative values of Procheck, Errat, Verify_3D, Prove in different stages of refinement used in Prime software 

Validation   After Modeling Refine Loop Minimize Predict Side Chain 
Ramachandran Plot Allowed  84.5 85.3 84.2 84.2 

Disallowed 0.8 0.3 0.3 0.3 
Errat  75.77 77.54 81.65 86.21 
Verify_3D  78.26 85.75 85.27 89.61 
Prove_z-score   0.834 0.79 0.71 0.71 

 

Table 3: Top Identified structural analogs in PDB Used by I- 
Tasser to model protein 

Rank PDB Hit TM-
score 

RMSD Identity Coverage 

1 3g5cA 0.949 0.6 0.354 0.954 
2 3k7lA 0.616 4.36 0.24 0.758 
3 2e3xA 0.603 5.04 0.311 0.79 
4 3hdbA 0.595 5.01 0.311 0.776 
5 2dw0B 0.589 4.89 0.293 0.762 
6 3dslA 0.584 5.05 0.3 0.766 
7 2erpB 0.558 4.49 0.276 0.677 
8 3k7nA 0.462 2.98 0.255 0.513 
9 2eroB1 0.402 2.02 0.368 0.423 

Homology modeling using I-TASSER 

In this method the target sequences are first threaded using a 
representative PDB structure library to search for the possible folds 
by Profile- Profile Alignment (PPA), Hidden Markov Model, PSI-
BLAST profiles, Needleman-Wunch and Smith-Waterman alignment 
algorithms. The top 10 alignments are from the following threading 
programs MUSTER, dPPAS, Neff-PPAS, PPAS, wdPPAS, SPARKS-X, 
SP3, HHSEARCH2, PROSPECT2, FFAS03. The PDB ID: 3G5CA had the 
best Z-score using all the ten algorithms and was used for modeling 
ADAM12 structure (Table 3). I-TASSER server predicted 5 models 
from which the model with best C-Score of 1.42 was selected with 
estimated accuracy of 0.91(TM-Score) and 4.3Å (RMSD) (Figure. 
2B). C-score is a confidence score for estimating the quality of 
predicted models by I-TASSER. It is calculated based on the  

significance of threading template alignments and the convergence 
parameters of the structure assembly simulations. 

Homology modeling using EasyModeller 

The sequences of target and template (3K7L) were aligned using the 
align module of EasyModeller. EasyModeller uses model building 
module of Modeller to build the 3D model. The best model of target 
was selected on the basis of the internal scoring functions, dope 
score of Modeller, and Procheck procedure (Laskowski et al., 1993). 
Then, the chosen model was subjected to energy minimization. The 
quality of the final model was validated using different validation 
software’s. Figure 2C shows the modeled protein using 
EasyModeller. 

Model validation  

Validation of the model including the geometric properties of the 
backbone conformations, were analyzed using various structure 
evaluation programs. Ramachandran plot calculations were 
calculated with PROCHECK program. Ramachandran plot of the 

three models was shown in Figure. 3. Model from prime indicated 
that 84.2% of the residues in the most favorable region, 14.7% in the 
allowed region, 0.8% in the generously allowed region and 0.3% in 
the disallowed region (Fig. 3A).  

A. Prime B. I- Tasser C. Easy-modeller
 

Fig. 3: Ramachandran Plot for the modeled ADAM12 after 
refinement. The red, yellow and white regions represent the 
favoured, allowed and the disallowed regions respectively. 

B. I- Tasser

A. Prime

C. Easy-modeller

 

Fig. 4: ERRAT plot of ADAM12 modelled by (a) Prime, (b) I-
Tasser, (C)EasyModeller and Overall quality factor or ERRAT 

score 

These results revealed that the majority of the amino acids are in a 
phi-psi distribution that is consistent with a right-handed α-helix, 
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and the model is reliable and of good quality. Whereas the other two 
models did not have such best scores compared with prime (Fig. 3B 
& 3C). Model developed by prime had ProQ LGscore of 3.79 and 
MaxSub of 0.09 indicated that the model developed by prime is was 
very good whereas other two model come in the criteria of fairly 

 good model with LGscore of 2. ERRAT (Figure. 4), Verify_3D, Prove, 
ProSA (Fig. 5 and 6), and dDFIRE showed that model developed by 
Prime was best compared to I-Tasser and Easy model. RMSD between 
the template and model developed by prime was 0.18 Å (Fig. 7.A) 
whereas with I-Tasser and Easy model it was 0.46 Å and 1.18 Å (Fig. 
7B and 7C). All these results suggest that the model developed by 
prime is comparatively robust and can be used in subsequent stages of 
analysis (Table 4). Therefore, the PROCHECK, ERRAT Verify_3D, Prove, 
ProSA results confirm the quality of predicted 3D structure as more 
reliable and within an acceptable range. 

A. Prime B. I- Tasser C. Easy-modeller
 

Fig. 5: ProSA-web Z-scores of ADAM12 model (black Spot) in 
relation to all protein chains in PDB determined by X-ray 

crystallography (light blue) or NMR spectroscopy (dark blue) 
with respect to their length 

A. Prime B. I- Tasser C. Easy-modeller
 

Fig. 6: Residue energy plots of ADAM12 from Prime, I-Tasser 
and EasyModeller 

A. Prime B. I- Tasser C. Easy-Modeller

 

Fig. 7: Superimposition of template (pink) and model protein 
(green) from with Prime, I-Tasser and EasyModeller. 

 

Table 4: Comparative values of Procheck, ProQ, Errat, Verify_3D, Prove, ProSA Z-scores and dDFIRE, with the RMSD between the Template 
and Modelled protein of all the Three models. 

 Validation Prime I- Tasser EasyModeller 
Procheck Ramachandran Plot Allowed 84.2 83.2 84.2 

Additionally allowed 14.7 12.1 13.7 
Generously Allowed 0.8 2.8 1.9 
Disallowed region 0.3 1.9 0.2 

ProQ Predicted LGscore 3.79 2.11 2.07 
Predicted MaxSub 0.09 0.24 0.01 

Errat 86.21 33.67 62.69 
Verify_3D 89.61 77.69 71.5 
Prove_z-score 0.71 0.46 1.03 
ProSA Z-score -8.4 -9.19 -6.83 
dDFIRE -805.53 -845.48 -852.87 
RMSD 0.18 0.46 1.18 

 

CONCLUSION 

ADAM12 has been implicated in the pathogenesis of various cancers, 
liver fibrogenesis, hypertension, and asthma, and its elevation or 
decrease in human serum has been linked to these and other 
physiological/pathological conditions. Therefore ADAM12 is 
considered as a significant drug target for various diseases. In the 
present work, a homology based 3D model of ADAM12 is 
constructed using three different softwares namely PRIME, I-Tasser 
and EasyModeller software.  

The best models produced by all software’s were further assessed by 
Procheck, ProQ, Errat, Verify_3D, Prove and dDFIRE. Based on the 
results it can be suggested that, PRIME software produced 
satisfactory Ramachandran plot statistics, Errat plot quality factor. 
Moreover, the online validation server (ProSA web) showed that the 
Z-score and energy of protein folding of the models was in good 

agreement with the available protein structures in PDB, which 
favored the overall quality of the structures. These analyses 
validated the homology model produced by PRIME is robust as well 
as reliable enough to be used for Drug Discovery.  
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