ASIAN JOURNAL OF PHARMACEUTICAL AND CLINICAL RESEARCH

Vol 7, Suppl 2, 2014

ISSN - 0974-2441

Research Article

SUPPLEMENT USE AND GASTROINTESTINAL BLEEDING

SIMON B. ZEICHNER¹, MILENA CAVALCANTE¹, JAMIE A.BARKIN²

¹Department of internal medicine, Mount Sinai medical Center. ²Department of gastroenterology, Mount Sinai Medical Center/University of Miami Miller School of Medicine Email: simonzeichner@gmail.com

Received: 8 March 2014, Revised and Accepted: 5 April 2014

ABSTRACT

Objective: The use of supplements, such as vitamins, over the counter (OTC) agents, and herbal remedies have become a popular complementary therapy for a variety of conditions. There have been case reports describing an increased risk of bleeding associated with these supplements. Our objective was to test the hypothesis that there is an increased incidence of gastrointestinal bleeds among patients who take supplements.

Methods: This was a prospective cohort, survey-based study of 100 patients seen at MSMC from February 2013 to August 2013. Data included patient age, sex, ethnicity, country of origin, alcohol use, medical comorbidities, information regarding previous gastrointestinal (GI) bleeds, laboratory values, as well as the use of supplements, multivitamins, and anticoagulants.

Results: Overall, 32% of patients who had gastrointestinal bleeding consumed supplements. More patients in the supplement group took NSAIDS 52.9% vs.27.9%, p =0.07), whereas more patients in the no supplement group took the combination of ASA and clopidogrel (25.6% vs. 5.9%, p = 0.08). Patients in the supplement group were less likely to have an elevated international normalized ratio (INR between 1.3-2.0: 6.3% vs. 22.1%, p = 0.05). Patients not taking supplements were significantly more likely to have no intervention done (14.7% vs. 0%, p = 0.02).

Conclusion: Supplement use within the community is very common. Although non-significant, patients taking supplements appeared to have more severe gastrointestinal bleeds that required more interventions. Larger studies are needed to better define the risks of GI bleeding with particular supplements.

Keywords: alternative medicine; gastrointestinal bleeding; herbal supplements

INTRODUCTION

The use of supplements, such as vitamins, over the counter (OTC) agents, and remedies have become popular complementary therapies for a variety of conditions [1, 2]. Total sales of herbal and dietary supplements in the United States (US) were \$4.8 billion for 2008, a 10.6 percent increase since 2004 [3]. Data from the 2007 National Health Interview Survey (NHIS) showed that 17.7 percent of US adults had used supplements in the previous year [4]. The safety of supplements is largely unknown, as only a few systemic studies have ever been completed. Knowledge about adverse effects comes predominantly from case reports and small clinical trials [5-16]. Many supplements are associated with clinically significant side effects, most notably bleeding. Ginkgo biloba, for example, used primarily in the treatment of dementia, has been associated with bleeding at multiple sites [9-15].

Upper gastrointestinal (GI) bleeding is a common medical condition that results in high patient morbidity and mortality and medical care costs. In a study from a large health maintenance organization in the US, the annual incidence of hospitalization for acute upper GI bleeding was approximately 100 per 100,000 adults; with incidence twice as common in males and increasing with advancing age [17]. Meanwhile, lower GI bleeding accounts for approximately 20-33% of episodes of GI hemorrhage, with an annual incidence of about 20-27 cases per 100,000 people in western countries.

Case reports and small clinical studies have described an increased risk of bleeding with specific supplements in the fields of dentistry [18] dermatology [19], ophthalmology [20] plastic surgery [21], and otology and laryngology [22]. To our knowledge, there have been no studies evaluating an association between supplementation (vitamins, OTC agents, herbal remedies) and Gl bleeding. In this large prospective, cohort single institution study, we set out to examine our hypothesis that particular supplements increase patient's risk for Gl bleeding. We also hope to document the prevalence of the use of supplements among a very diverse population.

MATERIALS AND METHODS

This prospective cohort, survey-based study was conducted following approval by the Mount Sinai Medical Center (MSMC) institutional review board. Informed consent was obtained from all participating patients. One hundred randomly selected patients admitted to MSMC by both the medicine and surgical services, from February 2013 to August 2013 were enrolled in the study. All patients who met inclusion criteria until a total of 100 patients were reached were included in the study. Patients were included in the study if: (1) They were admitted for GI bleeding; (2) GI bleeding was an incidental finding; or (3) GI bleeding developed during the course of their hospital stay. Internal medicine residents at our institution were responsible for surveying patients using the data collection sheet (Table 1). Patients were excluded if they lacked capacity to provide informed consent, did not speak English or Spanish, were younger than 18, or were pregnant. GI bleeding was confirmed through one of the following methods: (1) Visualization of overt hematemesis, melena, or hematochezia; (2) Nasal-gastric lavage or endoscopic/colonoscopy visualization of bleeding; (3) Positive fecal occult blood test.

After enrollment in the study, patient medical data was obtained from the patient and from paper and electronic medical records. Data included patient age, sex, ethnicity, country of origin, alcohol use, medical comorbidities, information regarding previous GI bleeds, laboratory values (INR and platelet count), as well as the use of supplements, multivitamins, and anticoagulants. Patients were followed for the duration of their hospital stay. Diagnosis, treatment (e.g., pRBC transfusions, endoscopic intervention, surgery), time spent in the intensive care unit (ICU), length of hospital stay, and the overall survival rate was recorded for all patients.

Patients who were taking herbal supplements (i.e. garlic, ginseng), vitamin supplements associated with GI bleeding (i.e., vitamins C and E, but not multivitamins), or who were taking an OTC supplement associated with bleeding (i.e. fish oil, flax oil) were all

classified as taking a supplement and were grouped together. Those patients not taking any of the aforementioned vitamins or supplements were groups together as not taking supplements. When the diagnosis of GI bleeding was made, patients at our institution generally had blood work drawn, which included a CBC, coagulation studies (PT/PTT), and a complete metabolic profile with renal and liver function tests. Transfusion practices were generally physician and patient dependent. Hemodynamically unstable patients or patients with significant cardiac disease were generally transfused at higher hemoglobin thresholds. Immediate endoscopic/surgical treatment and admission to the ICU was generally reserved for patients with profuse GI bleeding or those who were hemodynamically unstable. Stable patients generally underwent endoscopic intervention within the first 24 hours. If patients had more than one GI bleed during the course of their hospital stay, each source was listed.

A major bleed was defined as a drop in hemoglobin greater than or equal to 2 g/dL or the need for a transfusion of greater than or equal to 2 units of pRBC's. Endoscopic intervention was defined as injection therapy, thermal coagulation, hemostatic clips, argon plasma coagulation, and combination therapy. Patients were considered positive for supplement consumption if they used supplements daily for at least two weeks prior to hospital admission. They were considered positive for anticoagulant medication usage, if intake within two weeks prior to admission. Data was reported as percentages. Categorical data were cross-tabulated and their association was assessed using the Chi-square test of independence using the statistical package SPSS version 20 11.0 and Microsoft Excel. All tests were two-sided, and the Type I error was 0.05.

RESULTS

Of the 100 patients enrolled in the study, in which there were zero dropouts or exclusions, the median age at current GI bleed diagnosis was 71 years. Most of the patients were Hispanic (48; 48%) males (60; 60%), who were born in the US (45; 45%), were older than age 60 (61; 61%), and who drank less than 10 alcoholic beverage per week (83; 83%; Table 2). Thirty-two percent of patients in the study reported taking supplements in the two weeks before hospital admission, with the most common supplements being fish oil (7; 21.9%) and vitamin C/E (12; 37.5%). Sixty percent of patients took a blood thinner within two weeks prior to admission. Among this group, the most commonly reported blood thinners used were aspirin (ASA; 40; 66.7%), clopidogrel (19; 46.3%), non-steroidal anti-inflammatory agents (NSAIDS; 22; 36.7%), and warfarin (9; 15.0%), with the most common blood thinner combination being ASA and clopidogrel (12; 20.0%). Most patients in the study had a normal platelet count (79; 79%), with normal liver function (79; 79%), normal coagulation (INR: 0.7-1-3; 77; 77%), and the absence of end-stage renal disease (ESRD; 94; 94%). Forty-eight percent of patients had a previous GI bleed, with almost half occurring within the past 6 months (23; 47.9%). The most common cause of GI bleeding was UGI in origin (51; 51%), with PUD (14; 24%) being the most common source. The most common intervention needed was transfusion only (61; 61%), and of those patients receiving transfusion, 53 (53%) required more than 1 unit of pRBCs. Most patients had a length of hospital stay between 1-4 days (40; 40%), with a minority requiring admission to the ICU (32; 32%)

Overall, 32% of patients who had gastrointestinal bleeding consumed supplements. Although not statistically significant, patients who took supplements were older (> age 60: 21 (65.6%vs. 40 (58.8%), p = 0.52), more often female (15 (46.9% vs. 25 (36.8%), p = 0.34), drank less alcohol (<10 drinks/week: 55 (80.9% vs. 28 (87.5%, p = 0.41) and more frequently consumed concomitant multivitamin supplements (13 (40.6% vs. 16 (23.5%, p = 0.08; Table 3). There were no differences between the two groups based on ethnicity or country of birth. Patients taking supplements were non-significantly less likely to have taken anticoagulation within the previous two weeks (17 (53.1% vs. 43 (63.2%, p = 0.34). More patients in the supplement group took NSAIDS (52.9% vs. 12 (27.9%, p = 0.07), whereas more patients in the no supplement group took the combination of ASA and clopidogrel (11 (25.6% vs. 1 (5.9%, p = 0.08). Meanwhile, patients in the supplement group were

significantly less likely to have an elevated international normalized ratio (INR; INR between 1.3-2.0: 2 (6.3% vs. 15 (22.1%, p = 0.05). Patients in both groups were equally likely to have a history of a GI bleed (16 (50.0%) vs. 32 (47.1%, p =0.78), but those in the supplement group were non-significantly more likely to have had multiple bleeds in the past (>1: 7 (43.7%) vs. 9 (28.1%, p = 0.78) and within the past 6 months (10 (62.5%) vs. 15 (46.9%, p = 0.31). Although there were similar causes for GI bleeds in both groups (UGI: 14 (43.8% vs. 35 (51.5%), p = 0.47), patients in the supplement group were non-significantly more likely to be transfused (23 (71.9%) vs. 38 (55.9%), p = 0.13) with multiple units of packed red blood cells (pRBCs) (18 (56.3%) vs. 35 (51.5%), p =0.66). Patients in the no supplement group were significantly more likely to have no intervention done (10 (14.7%) vs. 0 (0%, p = 0.02). Although ICU admission rates were similar between the two groups (10 (31.3% vs. 22 (32.4%, p =0.91), patients in the supplement group had non-significant longer ICU stays (>/=3 days: 6 (60.0% vs. 8 (36.4%, p = 0.21), longer total hospital stays (>/= 5-8 days: 12 (37.5% vs. 18 (26.5%, p = 0.26), and a higher rate of mortality (1 (3.1% vs. 1 (1.5%), p = 0.58).

DISCUSSION

Patient Population

Our patient population was made up of predominantly older males; consistent with previous large epidemiologic studies of patients who have GI bleeds [23]. The incidence of alcohol abuse amongst our participants was higher than that in general public [24], although this may be accounted for due to rates of higher alcohol abuse in this patient population. Thirty-two percent of the patients in our study reported taking at least one supplement, and this was consistent with the range seen in other studies [18-62%; 25-26]. However, it is important to note that in a study by Kaye et al., 70% of patients failed to disclose their supplement use during preoperative assessment [27]. In our study, composed of predominately older individuals, it is not surprising that within two weeks prior to admission, 60% of the patients had taken some form of blood thinner, most commonly aspirin for primary/secondary prevention of cardiovascular events. Among our patient population, the incidence of upper GI bleeding was much more common than lower GI bleeding, with the most common upper GI source being peptic ulcer disease (PUD; 29.2%) and the most common lower GI source being diverticulosis (10%). This finding is consistent with larger epidemiological studies [28, 29]. Despite having a relatively high rate of ICU admissions (32%), there was a relatively low mortality rate (2%) compared to previous studies [30].

Supplement use vs. No Supplement use

Previous studies have suggested that supplements were most likely to be taken by older, more educated, Hispanic women who lived in the western part of the US [31]. Although not significant, our study supported that older women were more likely to use supplements. There were no differences between the two groups based on ethnicity/race or country of birth. Those patients who took supplements were more likely to consume less alcohol/per week, which is consistent with the idea that those who take supplements attempt to live healthier lifestyles. Not surprisingly, those patients who took supplements were more likely to also take a multivitamin. This finding suggests that those patients who use complementary therapies may be more open to using additional complementary therapies.

Despite taking less combination anticoagulation medications (ASA and clopidogrel, p = 0.08), having lower platelet counts and INRs, consuming less alcohol [known to increase bleeding; 32], and having a lower rate of cirrhosis, patients in our supplement group appeared to have more severe GI bleeds. Whereas patients in the no supplement group were significantly more likely to have no intervention/transfusion for their bleed, supplement patients appeared to require more transfusions, longer ICU and overall hospital stays, and had an overall higher mortality rate. Our results provide further evidence that supplements may increase the risk severity of GI bleeding independent of other bleeding risks, and this can have a detrimental effect on patient health. Although both

groups of patients had similar causes for their bleeding and similar percentages in terms of a history positive for GI bleeds, those patients in the supplement group were significantly more likely have "ischemic colitis" as the cause of their GIB, and were nonsignificantly more likely to have had multiple bleeds within the past 6 months. These results suggest that supplements place patients at an increased risk for bleeding, particularly for recurrent bleeding in those patients who are predisposed. Interestingly, the INRs were greater in the no supplement group, despite reports from multiple previous studies that particular supplements increase the risk of bleeding by not only interacting with warfarin, but also by directly impacting the INR [33, 34]. Also, there was a trend toward more NSAID use in the supplement group (p = 0.07). Although these results suggest that the increased severity of GI bleeding was secondary to more severe PUD from increased NSAID use, we also cannot rule out that patients taking supplement had worse bleeding secondary to the supplement effect on platelet aggregation.

Supplements

Our study was unique as it was one of the first reports documenting the prevalence of supplement use among a very diverse community (Table 3). Although the use of supplement was once thought to be rare, evidence suggests that it is becoming much more common (1), and with a broad spectrum of agents used. Although it is thought that there are many different types of supplements used by patients within the community [35], the patients in our study used only a limited number of supplements (Table 4). The supplements used by patients in our study included fish oil, vitamin c, vitamin e, mistletoe, dandelion, ginger, garlic, and COQ10. The prevalence of particular supplements was similar to that in larger studies [36]. All of these supplements have been associated with bleeding through a variety of mechanisms impacting both platelet and coagulation function [37-45]. These agents have also been found to increase bleeding by interacting with other anticoagulants and antiplatelet agents via the cytochrome p450 system [46].

The modern age of supplements began in 1994 with the passage of the Dietary Supplement Health and Education Act, which declared that herbal and dietary supplements were "foods" and were exempt from safety and efficacy requirements [47]. In 1999, a new FDA labeling regulation was enacted which required dietary supplements to provide a complete list of ingredients, but did not require a list of interactions, side effects, warnings, or contraindications [31]. The absence of regulation equated to a lack of standardization of supplements and little assurance of predictable potencies, contamination control, and accurate labeling [48]. Lack of physician knowledge regarding supplements [26] and lack of patient disclosure regarding the use of supplements was seen across numerous medical specialties [27]. There were numerous case reports of perioperative bleeding complications related to supplements and physicians in most surgical fields adopted policies requiring patients to discontinue supplements 2-3 weeks before surgery and not restart them until 2-3 weeks after [47].

Strengths/Limitations

In this prospective cohort study, we documented the high prevalence of supplement use among a diverse population of patients with GI bleeding. The small sample and survey-based nature of the study had an inherent limitation of limited power and self-reporting bias, respectively. Despite this limitation, it appeared that patients taking several different types of supplements had more severe GI bleeds that required more interventions.

CONCLUSION

Although not significant, supplement use was also associated with longer hospital stays and an overall higher mortality rate. In order to better inform patients, physicians, and policy makers, larger studies are needed to better define the GI bleeding risks associated with particular supplements.

Table 1: Data collection sheet used to survey n = 100 patients with gastrointestinal bleeds who were taking supplements.

Date							
Age							
Sex	Male	Female					
Ethnicity	White	African American	Hispanic	Asian	Afro-Caribbean	Middle Eastern	Unknown
Country of							
Origin							
Comorbidities	Von	Hemophilia	Leukemia	Idiopathic	Disseminated	Vitamin K	ESRD
	Willebrand			thrombocytopenic	intravascular	deficiency	
	disease			purpura	coagulation		
Supplement	Garlic	Gingko-biloba	Ginger	Ginseng	Fish oil	Flax Oil	Coq 10
	Vitamin C	Vitamin E	Other (please specify)				
Length of time			speenyj				
on supplement							
Multivitamin	Yes	No	If yes, please				
use			specify brand.				
Combination	Yes	No	If yes, please				
supplement			specify brand.				
Anticoagulation	Aspirin	Clopidogrel	NSAIDS	Coumadin	Rivaroxaban	Dabigatran	Enoxaparin
taken in the last							
2 weeks							
Last INR level	0.7-1.3	1.3-2	>2				
Last platelet	>/=150,000	100,000-	50,000-	20,000-50,000	<20,000		
count		150,000	100,000				
History of GI	Yes	No	If yes, please				
Bleed			specify date and #				
History of Liver	Cirrhosis	Increased Liver	and # None				
History of Liver Disease	CITTIOSIS	Function Tests	None				
Type of current	Major	Minor	(Major bleed=				
bleed	Majoi	MIIIOI	decrease in				
biccu			hemoglobin of				
			>/= 2 g/Dl. or				
			requiring 2				
			Units of				

			packed red blood cells	
Source	Upper	Lower	blood cells	
bource	PUD	Diverticulosis		
	Esophagitis	Hemorrhoids		
	Varices	Colon Cancer		
	Gastric Cancer	Ischemic Colitis		
	Esophageal	Inflammatory		
	Cancer	Bowel Disease		
	Gastric antral	Infectious Colitis		
	vascular			
	ectasia			
	Erosive	Meckel's		
	Gastritis	Diverticulum		
	Dieulafoy's	Angiodysplasia		
	lesion			
	Mallory-Weiss	Duodenitis		
	Tear			
Intervention	Nothing	Transfusion	Endoscopic	Surgery
Length of				
Hospitalization				
ICU	Yes	No		
Death due to GI	Yes	No		
Bleed				
Alcohol Use	>/=30	10-30	<10	None
	drinks/week	drinks/week	drinks/week	

Table 2: Demographic, laboratory, diagnosis, treatment, and prognostic variables for n=100 patients diagnosed with GI bleeding fromFebruary 2013-August 2013 at Mount Sinai Medical Center.

Category		Number (%)
Age	<60	39 (39)
Age	>60	61 (61)
Sex	Male	60 (60)
Sex	Female	40 (40)
Alcohol use	<10 drink/week	83 (83)
Alcohol use	>/=10 drinks/week	17 (17)
Ethnicity	Caucasian	39 (39)
Lennerty	Hispanic	48 (48)
	AA	12(12)
	Other	1 (1)
Country of Birth	USA	45 (45)
country of birth	Caribbean	35 (35)
	Central America	6 (6)
	South America	4 (4)
	Europe	7 (7)
	Other	3 (3)
Supplement Use	Yes	32 (32)
Supplement Ose	No	68 (68)
# of supplements	1	23 (71.9)
# of supplements	2	7 (21.9)
	3	1 (3.1)
	4	1 (3.1)
Type of supplement	Fish Oil	7 (21.9)
Type of supplement	Vitamin C/E	12 (37.5)
	Garlic	12 (37.3)
	Ginger	1 (3.1)
	Multiple	5 (15.6)
	Other	6 (18.8)
Multivitamin	Yes	29 (29)
Multivitaliili	No	71 (71)
Anticoagulation previous 2 weeks	Yes	60 (60)
Anticoagulation previous 2 weeks	No	40 (40)
Aspirin	Yes	40 (66.7)
Aspirin	No	20 (33.3)
Clopidogrel	Yes	19 (46.3)
ciopidogrei	No	41 (53.7)
Warfarin	Yes	9 (15.0)
waitai ili	No	51 (85.0)
Non-Steroidal Ant-inflammatory	Yes	22 (36.7)
Non Steroidal Ant-Inhammatory	No	38 (63.3)
Rivaroxaban (Xarelto®, Janssen	Yes	1 (1.7)
Pharmaceutica, Belgium)	No	59 (98.3)
i nui muccutica, Deigiumij	110	57 (70.5)

Anticoagulation Combination	ASA+ Clopidogrel	12 (20.0)
	ASA+NSAIDS	4 (6.7)
	ASA+ Clopidogrel+NSAIDS	3 (5.0)
	ASA+warfarin+NSAIDS	1 (1.7)
	ASA+ warfarin	1 (1.7)
	ASA+ Clopidogrel+ warfarin	2 (3.3)
	Clopidogrel+ warfarin	1 (1.7)
	ASA+rivaroxaban	1 (1.7)
Platelet Count	>/=150K	79 (79)
	<150K	21 (21)
Liver Function	Normal	79 (79)
	Increased LFT's	10 (10)
	Cirrhosis	11 (11)
End-Stage Renal Disease	Yes	6 (6)
Life Stage Renal Discuse	No	94 (94)
INR	0.7-1.3	77 (77)
INK	1.3-2	
		17 (17)
	>2	6 (6)
History of GI bleed	Yes	48 (48)
	No	52 (52)
Previous bleed w/n 6 months	Yes	23 (47.9)
	No	25 (52.1)
Source of previous GI bleed	PUD	14 (29.2)
	Varices	2 (4.2)
	Diverticulosis	5 (10.4)
	Hemorrhoids	6 (12.5)
	AVM	4 (8.3)
	Other	17 (35.4)
# of previous bleeds	1	29 (60.4)
-	>1	19 (39.6)
	UGI	51 (51)
Source of current GI bleed	LGI	25 (25)
	Unknown	24 (24)
	PUD	24 (24)
	Esophagitis/gastritis/duodenitis	13 (13)
	Mallory Weiss Tear	4 (4)
	Varices	7 (7)
	Gastropathy	3 (3)
	Diverticulosis	10 (10)
	Hemorrhoids	3 (3)
	Colon Cancer	
		3 (3)
	AVM	1 (1)
	Ischemic colitis	2 (2)
	Other	11 (11)
	Unknown	24 (24)
Intervention	Transfusion Only	61 (61)
	Endoscopic Intervention	20 (20)
	Surgery	8 (8)
	No Intervention	11 (11)
# of units given	0-1	47 (47)
	>1	53 (53)
Length of Hospital Stay (days)	1-4	40 (40)
	5-8	30 (30)
	>8	30 (30)
ICU	Yes	32 (32)
	No	68 (68)
Length of ICU stay (days)	<3	18 (56.3)
	>/=3	14 (43.8)
Death due to GI bleed	Yes	2 (2)
2 cum due to di Diecu	No	98 (98)
	110	J0 (J0 j

AA: African American, ASA: Aspirin, NSAIDS: Non-steroidal anti-inflammatory, PUD: Peptic ulcer disease, UGI; Upper Gastrointestinal, LGI: Lower Gatsrointestinal, AVM: Arteriovenous malformation, LFT: Liver function test, ICU: Intensive care unit

Table 3: Comparison between patients who took supplements and those who did not. *chi-squared test

Category		Supplement use (n=32)	No supplement use(n=68)	p-value*
Age	<60	11 (34.4)	28 (41.2)	0.52
-	>60	21 (65.6)	40 (58.8)	
Sex	Male	17 (53.1)	43 (63.2)	0.34
	Female	15 (46.9)	25 (36.8)	
ETOH use	<10 drink/week	28 (87.5)	55 (80.9)	0.41
	>/=10 drinks/week	4 (12.5)	13 (19.1)	
Ethnicity	Caucasian	12 (37.5)	27 (39.7)	0.83

	Hispanic	15 (46.9) 5 (15 6)	33 (48.5)	0.88
	AA	5 (15.6)	7 (10.3)	0.44
	Other	0(0)	1 (1.5)	0.49
Country of Birth	USA	14 (43.8)	31 (45.6)	0.86
	Caribbean	11 (34.4)	24 (35.3)	0.93
	Central America	3 (9.4)	3 (4.4)	0.33
	South America	1 (3.1)	3 (4.4)	0.76
	Europe	3 (9.4)	4 (5.9)	0.52
	Other	0(0)	3 (4.4)	0.23
Iultivitamin	Yes	13 (40.6)	16 (23.5)	0.08
	No	19 (59.4)	52 (76.5)	
Anticoagulation previous	Yes	17 (53.1)	43 (63.2)	0.34
weeks	No			0.54
		15 (46.9)	25 (36.8)	0.42
ISA	Yes	10 (58.8)	30 (69.8)	0.42
	No	7 (41.2)	13 (30.2)	
lopidogrel	Yes	5 (29.4)	14 (32.6)	0.81
	No	12 (70.6)	29 (67.4)	
Warfarin	Yes	3 (17.6)	6 (14.0)	0.72
	No	14 (82.4)	37 (86.0)	
ISAIDS	Yes	9 (52.9)	12 (27.9)	0.07
	No	8 (47.1)	31 (62.1)	
Rivaroxaban	Yes	0 (0)	1 (2.3)	0.53
	No	17 (100)	42 (97.7)	0.00
Anticoagulation	ASA+ Clopidogrel	1 (5.9)	11 (25.6)	
Combination				0.00
Lombination	ASA+NSAIDS	2 (11.8)	2 (4.7)	0.08
	ASA+ Clopidogrel+NSAIDS	1 (5.9)	2 (4.7)	0.32
	ASA+ warfarin +NSAIDS	1 (5.9)	0 (0)	0.84
	ASA+ warfarin	0 (0)	1 (2.3)	0.11
	ASA+ Clopidogrel+ warfarin	1 (5.9)	1 (2.3)	0.53
	Clopidogrel+ warfarin	1 (5.9)	0 (0)	0.49
	ASA+rivaroxaban	0	1 (2.3)	0.11
		-	(-)	0.49
Platelet Count	>/=150K	26 (81.3)	53 (77.9)	0.70
	<150K	6 (18.8)	15 (22.1)	
liver Function	Normal	24 (75.0)	55 (80.9)	0.50
	Increased LFTS	5 (15.6)	5 (7.4)	0.20
	Cirrhosis	3 (9.4)	8 (11.8)	0.72
ESRD	Yes		4 (5.9)	0.94
LOND		2 (6.3)		0.94
ND	No	30 (93.8)	64 (94.4)	0.22
INR	0.7-1.3	27 (84.4)	50 (73.5)	0.23
	1.3-2	2 (6.3)	15 (22.1)	0.05
	>2	3 (9.4)	3 (4.4)	0.33
listory of GI bleed	Yes	16 (50.0)	32 (47.1)	0.78
	No	16 (50.0)	36 (52.9)	
Previous bleed w/n 6	Yes	10 (62.5)	15 (46.9)	0.31
nonths	No	6 (37.5)	17 (53.1)	5.61
Source of previous GI	PUD	4 (25.0)	10 (31.3)	0.65
bleed	Varices	4 (23.0) 0	4 (12.5)	0.03
neeu				
	Diverticulosis	2 (12.5)	3 (9.4)	0.74
	Hemorrhoids	4 (25.0)	2 (6.3)	0.06
	AVM	2 (12.5)	2 (6.3)	0.46
	Other	4 (25.0)	11 (34.4)	0.51
t of previous bleeds	1	9 (56.3)	23 (71.9)	0.28
	>1	7 (43.7)	9 (28.1)	
Current GI bleed	UGI	14 (43.8)	35 (51.5)	0.47
	LGI	10 (31.3)	22 (32.4)	0.91
	Unknown	8 (25.0)	11 (16.2)	0.29
	PUD	8 (25.0)	16 (23.5)	0.87
	Esophagitis/gastritis/duodenitis	4 (12.5)	9 (13.2)	0.92
	Mallory Weiss Tear	0 (0)	4 (5.9)	0.16
	Varices	2 (6.3)	5 (7.4)	0.84
	Gastropathy	0 (0)	3 (4.4)	0.23
	Diverticulosis	2 (6.3)	8 (11.8)	0.39
	Hemorrhoids	1 (3.1)	2 (2.9)	0.96
	Colon Cancer	0 (0)	3 (4.4)	0.23
	AVM	0 (0)	1 (1.5)	0.49
	Ischemic colitis	2 (6.3)	0 (0)	0.04
	Other	5 (15.6)	6 (8.8)	0.31
	Unknown	8 (25.0)	11 (16.2)	0.29
ntervention	Transfusion Only	23 (71.9)	38 (55.9)	0.13
	Endscopic Intervention	7 (21.9)	13 (19.1)	0.75
	Surgery	2 (6.3)	7 (10.3)	0.51
	Surgery	210.31		0.01

# of units given	0-1	14 (43.8)	33 (48.5)	0.66
	>1	18 (56.3)	35 (51.5)	
Length of Hospital Stay	1-4	11 (34.4)	29 (42.6)	0.43
(days)	5-8	12 (37.5)	18 (26.5)	0.26
	>8	9 (28.1)	21 (30.9)	0.78
ICU	Yes	10 (31.3)	22 (32.4)	0.91
	No	22 (68.8)	46 (67.6)	
Length of ICU stay (days)	<3	4 (40.0)	14 (63.6)	0.21
-	>/=3	6 (60.0)	8 (36.4)	
Death due to GI bleed	Yes	1 (3.1)	1 (1.5)	0.58
	No	31 (96.9)	67 (98.5)	

ETOH: Alcohol, AA: African American, ASA: Aspirin, NSAIDS: Non-steroidal anti-inflammatory, PUD: Peptic ulcer disease, UGI; Upper Gastrointestinal, LGI: Lower Gatsrointestinal, AVM: Arteriovenous malformation, LFT: Liver function test, ESRD: End-stage renal disease, ICU: Intensive care unit.

Table 4: The comprehensive list of supplements used by patients in our study compared with Kaufman et al. (2002) 36, the suggested
uses of the supplements, their mechanism of action, and their affect on INR.

List of Supplements	Incidence (%)		Uses	Mechanism of	Effect on
	Zeichner et Kaufman et al. al. (2013) (2002)36 (n=100) (n=2590)		_	Increased Risk of bleeding	INR55
Fish oil aka Eicosapentaenoic acid	11	0	Hypertriglyceridemia, coronary artery disease, inflammation48, 49	Decreased thromboxane A2 production, prolonged bleeding time, Platelet aggregation inhibitor	Increase
Mistletoe	1	0	Circulatory and respiratory disorders, cancer prevention50	Unknown	-
Vitamin C	13	9.1	Antioxidant, gout, common cold51	Unknown	Increase
Vitamin E	5	10	Cancer prevention, antioxidant, anti-athersclerosis52, 53	Intrinsic pathway inhibition, Platelet aggregation inhibitor	Increase
Ginger	1	0	Nausea, bloating dyspepsia, arthritis, stress reduction41, 54	Platelet aggregation inhibitor	Increase
Garlic	2	1.9	Antihypertensive, anti-asthmatic, antipyretic, antihelmenthic45	Platelet aggregation inhibitor (collagen, thromboxane, ADP)	Increase
CoQ10	3	0	Heart disease, migraine headaches, antihypertensive47	Vitamin K inhibition	Increase
Dandelion	1	0	Infection, liver and biliary dysfunction47	Unknown	-
Milk Thistle	1	0	Liver disease, diabetes, high cholesterol, cancer prevention47	Unknown	Increase
Zinc	2	2.2	Skin diseases, liver and kidney dysfunction47	Unknown	-
Multivitamin	29	26	Antioxidant	-	-

REFERENCES

- 1. Eisenberg DM, Davis RB, Ettner SL, et al. Trends in alternative medicine use in the United States, 1990-1997: results of a follow-up national survey. JAMA 1998; 280:1569.
- Pandey M, Verma R, Saraf S. Nutraceuticals: new era of medicine and health. AJPCR. Vol.3 Issue 1, January-March 2010. P. 13-15
- 3. American Botanical Council. Herbal Supplement Sales Experience Slight Increase in 2008. HerbalGram 2009; 82:58.
- 4. Barnes PM, Bloom B, Nahin RL. Complementary and alternative medicine use among adults and children: United States, 2007. Natl Health Stat Report 2008.
- Pruthi RK, Schmidt KA, Slaby JA, Rodriguez V. Platelet dysfunction induced by herbal supplements in a patient with mild hemophilia A. J Thromb Haemost. 2007 Dec;5(12):2556-8.
- Friedman JA, Taylor SA, McDermott W, Alikhani P. Multifocal and recurrent subarachnoid hemorrhage due to an herbal supplement containing natural coumarins. Neurocrit Care. 2007;7(1):76-80.
- Randhawa S, Abowd M, Sharma A, Weiss JS. Anterior segment complications of a nutritional supplement. J Cataract Refract Surg. 2007 May;33(5):918-20.

- Kabalak AA, Soyal OB, Urfalioglu A, Saracoglu F, Gogus N. Menometrorrhagia and tachyarrhythmia after using oral and topical ginseng. J Womens Health (Larchmt). 2004 Sep;13(7):830-3.
- 9. Bent S, Goldberg H, Padula A, Avins AL. Spontaneous bleeding associated with ginkgo biloba: a case report and systematic review of the literature: a case report and systematic review of the literature. J Gen Intern Med 2005; 20:657.
- Rosenblatt M, Mindel J. Spontaneous hyphema associated with ingestion of Ginkgo biloba extract. N Engl J Med 1997; 336:1108.
- 11. Rowin J, Lewis SL. Spontaneous bilateral subdural hematomas associated with chronic Ginkgo biloba ingestion. Neurology 1996; 46:1775.
- 12. Gilbert GJ. Ginkgo biloba. Neurology 1997; 48:1137.
- 13. Vale S. Subarachnoid haemorrhage associated with Ginkgo biloba. Lancet 1998; 352:36.
- 14. Pedroso JL, Henriques Aquino CC, Escórcio Bezerra ML, et al. Ginkgo biloba and cerebral bleeding: a case report and critical review. Neurologist 2011; 17:89.
- 15. Destro MW, Speranzini MB, Cavalheiro Filho C, et al. Bilateral haematoma after rhytidoplasty and blepharoplasty following chronic use of Ginkgo biloba. Br J Plast Surg 2005; 58:100.

- 16. Yaheya M, Ismail M, Drug-food interactions and role of the pharmacist. Vol.2 Issue 4, October.-December. 2009
- Longstreth GF. Epidemiology of hospitalization for acute upper gastrointestinal hemorrhage: a population-based study. Am J Gastroenterol 1995; 90:206.
- Spolarich AE, Andrews L. An examination of the bleeding complications associated with herbal supplements, antiplatelet and anticoagulant medications. J Dent Hyg. 2007 Summer;81(3):67.
- Chang LK, Whitaker DC. The impact of herbal medicines on dermatologic surgery. Dermatol Surg. 2001 Aug;27(8):759-63.
- Randhawa S, Abowd M, Sharma A, Weiss JS. Anterior segment complications of a nutritional supplement. J Cataract Refract Surg. 2007 May;33(5):918-20.
- Wong WW, Gabriel A, Maxwell GP, Gupta SC. Bleeding risks of herbal, homeopathic, and dietary supplements: a hidden nightmare for plastic surgeons? Aesthet Surg J. 2012 Mar;32(3):332-46.
- Javed F, Golagani A, Sharp H. Potential effects of herbal medicines and nutritional supplements on coagulation in ENT practice. J Laryngol Otol. 2008 Feb;122(2):116-9. Epub 2007 Jul 19.
- 23. Westhoff, John (March 2004). "Gastrointestinal Bleeding: An Evidence-Based ED Approach To Risk Stratification".
- Hasin DS, Stinson FS, Ogburn E, Grant BF. Prevalence, correlates, disability, and comorbidity of DSM-IV alcohol abuse and dependence in the United States: results from the National Epidemiologic Survey on Alcohol and Related Conditions. Arch Gen Psychiatry 2007; 64:830.
- Bardia A, Nisly NL, Zimmerman MB, Gryzlak BM, Wallace RB. Use of herbs among adults based on evidence-based indications: findings from the National Health Interview Survey. Mayo Clin Proc. 2007 May;82(5):561-6.
- Barrett B. Alternative, complementary, and conventional medicine: is integration upon us? J Altern Complement Med. 2003 Jun;9(3):417-27.
- Kaye AD, Clarke RC, Sabar R, Vig S, Dhawan KP, Hofbauer R, Kaye AM. Herbal medicines: current trends in anesthesiology practice--a hospital survey. J Clin Anesth. 2000 Sep;12(6):468-71.
- 28. Boonpongmanee S, Fleischer DE, Pezzullo JC, et al. The frequency of peptic ulcer as a cause of upper-GI bleeding is exaggerated. Gastrointest Endosc 2004; 59:788.
- 29. Strate LL. Lower GI bleeding: epidemiology and diagnosis. Gastroenterol Clin North Am 2005; 34:643.
- Peter DJ, Dougherty JM. Evaluation of the patient with gastrointestinal bleeding: an evidence based approach. Emerg Med Clin North Am. Feb 1999;17(1):239-61,
- 31. Shankland WE 2nd. Four common herbs seen in dental practice: properties and potential adverse effects. Cranio. 2009 Apr;27(2):118-24.
- 32. Fraser AG: Pharmacokinetic interactions between alcohol and other drugs. Clin. Pharmacokinet. (1997) 33:79-90.
- Heck AM, Dewitt BA, Lukes AL:Potential interactions between alternative therapies and warfarin. Am. J. Health Syst. Pharm. (2000) 57:1221-1230.
- Wittkowsky AK: A systematic review and inventory of supplement effects on warfarin and other anticoagulants. Thromb. Res. (2005) 117:81-86. Tsen LC, Segal S, Pothier M, Badler AM. Alternative medicine use in presurgical patients. Anesthesiology 2000;35:226–7.
- 35. Heller J, Gabbay JS, Ghadjar K, et al. Top-10 list of herbal and supplemental medicines used by cosmetic patients: what the plastic surgeon needs to know. Plast Reconstr Surg 2006;117:436-445.

- Kaufman DW, Kelly JP, Rosenberg L, Anderson TE, Mitchell AA. Recent patterns of medication use in the ambulatory adult population of the United States: The Slone survey. JAMA. 2002;287(3):337–344.
- Rose KD, Croissant PD, Parliament CF, Levin MP. Spontaneous spinal epidural hematoma with associated platelet dysfunction from excessive garlic consumption: a case report. Neurosurgery. 1990;26:880-882.
- Grontved A, Brask T, Kambskard J, et al. Ginger root against seasickness: a controlled trial on the open sea. Acta Otolaryngol 1988;105:45-49.
- Holtmann S, Clarke AH, Scherer H, et al. The anti-motion sickness mechanism of ginger: a comparative study with placebo and dimenhydrinate. Acta Otolaryngol 1989;108:168-174.
- Srivastava KC. Isolation and effects of some ginger components of platelet aggregation and eicosanoid biosynthesis. Prostaglandins Leukot Med 1986;25:187-198.
- 41. Backon J. Ginger: inhibition of thromboxane synthetase and stimulation of prostacyclin: relevance for medicine and psychiatry. Med Hypotheses. 1986 Jul;20(3):271-8.
- 42. Tamura Y, Hirai A, Terano T, et al. [Anti-thrombotic and antiatherogenic action of eicosapentaenoic acid]. Nippon Rinsho 1992;50:403-407.
- Schmidt EB, Varming K, Ernst E, et al. Dose-response studies on the effect of n-3 polyunsaturated fatty acids on lipids and haemostasis. Thromb Haemost 1990;63:1-5.
- Marsh SA, Coombes JS. Vitamin E and alpha-lipoic acid supplementation increase bleeding tendency via an intrinsic coagulation pathway. Clin Appl Thromb Hemost 2006;12:169-173.
- 45. Williams JC, Forster LA, Tull SP, et al. Dietary vitamin E supplementation inhibits thrombin-induced platelet aggregation, but not monocyte adhesiveness, in patients with hypercholesterolaemia. Int J Exp Pathol. 1997 Aug;78(4):259-66.
- Haller CA. Clinical approach to adverse events and interactions related to herbal and dietary supplements. Clin Toxicol (Phila). 2006;44(5):605-10.
- Dietary Supplement Health and Education Act, Pub L No. 103-417, 180 Stat 2126 (1994).
- Ang-Lee MK, Moss J, Yuan CS. Herbal medicines and perioperative care. JAMA. 2001 Jul 11;286(2):208-16.
- Tamura Y, Hirai A, Terano T, et al. Anti-thrombotic and antiatherogenic action of eicosapentaenoic acid]. Nippon Rinsho 1992;50:403-407.
- Schmidt EB, Varming K, Ernst E, et al. Dose-response studies on the effect of n-3 polyunsaturated fatty acids on lipids and haemostasis. Thromb Haemost 1990;63:1-5.
- National Center for Complementary and Alternative Medicine (NCCAM). http://nccam.nih.gov/health/whatiscam. Accessed September 9th, 2013.
- Marsh SA, Coombes JS. Vitamin E and alpha-lipoic acid supplementation increase bleeding tendency via an intrinsic coagulation pathway. Clin Appl Thromb Hemost 2006;12:169-173.
- 53. Srivastava KC. Isolation and effects of some ginger components of platelet aggregation and eicosanoid biosynthesis. Prostaglandins Leukot Med 1986;25:187-198.
- 54. Stevinson C, Pittler MH, Ernst E. Garlic for treating hypercholesterolemia: ameta-analysis of randomized clinical trials. Ann Intern Med. 2000;133:420-429.
- Ramsay NA, Kenny MW, Davies G, Patel JP: Complimentary and alternative medicine use among patients starting warfarin. Br. J. Haemat. (2005) 130:777-780.