ZOLEDRONIC ACID: A MISCHIEVOUS SUSPECT FOR LIVER INJURY

RUPAM GILL1, BALAJI O2, MEENA KUMARI K1*, AMBERKAR MOHAN BABU V1, KARTHIK S UDUPA2

1Department of Pharmacology, Kasturba Medical College, Manipal University, Manipal - 576 104, Karnataka, India. 2Department of Medical Oncology, Kasturba Hospital, Kasturba Medical College, Manipal University, Manipal - 576 104, Karnataka, India.

Email: mini41178@yahoo.co.in

INTRODUCTION

Cancers are the leading cause of mortality worldwide with the most common cancers responsible for half of the global incidence is lung, breast, colorectal, prostate, stomach, and liver. Worldwide among men, lung cancer is more prevalent, whereas breast cancer typically predominates amid women. Overall, lung cancer is the most commonly diagnosed cancer worldwide with about 1.8 million new cases diagnosed every year with 1.6 million deaths [1]. Every year in India around 63,000 new lung cancer cases are reported [2]. Among the various histological subtypes of lung cancer, trends show increased incidence of adenocarcinoma among both men and women [3]. Pemetrexed-containing chemotherapeutic regimens are now widely used compared to taxanes, platinum-based, and other chemotherapeutic agents [4]. Bone is a common site of metastasis and incidence of lung cancer metastasizing to bone is around 36% [5]. Zoledronic acid, a bisphosphonate is very effective in the treatment of bone metastasis [6]. Adverse effects associated with it include flu-like symptoms, nausea, arthralgia, renal tubular acidosis, hypocalcemia, esophageal irritation, and fatigue. Hepatic dysfunction exclusively due to zoledronic acid is a very rare occurrence with only two case reports so far brought to the light of scientific committee from Europe and China. Until now, no such report has been mentioned from the Indian subcontinent. Henceforth, we are reporting a case of zoledronic acid-induced liver injury.

CASE REPORT

A 47-year-old male diagnosed as adenocarcinoma of the lung and received 8 cycles of chemotherapy comprising intravenous administration of cisplatin 125 mg, pemetrexed 850 mg along with zoledronic acid 4 mg. After the completion of the 8th cycle, the liver enzymes were found to be markedly elevated, evincing zoledronic acid as the cause for hepatotoxicity. The case details were taken from the patient’s medical record along with the biochemical test reports and radiographic images. The causal association was confirmed using Naranjo’s algorithm and Roussel Uclaf Causality Assessment Method (RUCAM). After the uneventful chemotherapy, patient’s liver function tests (LFT) were abnormal. There was an elevation in the aspartate aminotransferase, alanine transaminase, alkaline phosphatase, and direct bilirubin. The causal relationship was established using Naranjo’s algorithm (score-6) and RUCAM (score-5), displayed a “probable” and “possible” association. Hartwig’s severity scale and Thornton’s preventability scale displayed the adverse drug reaction to being moderately severe and not preventable, respectively. The zoledronic acid was stopped and never readministered. The LFTs assumed normal after a span of 2 months. The mechanism underlying hepatotoxicity due to zoledronic acid remains elusive. Zoledronic acid can induce acute phase response mediated by active production of interleukin-6, tumor necrosis factor alpha, and pro-inflammatory cytokines from the T-cells and macrophages. Vigilant monitoring along with timely assessment and management can prevent the occurrence of irreversible liver damage. Henceforth, we would like to report the rare incidence of drug induced hepatic damage due to zoledronic acid. Henceforth, we would like to report the rare incidence of drug induced hepatic damage due to zoledronic acid.
breast, kidney and lung [5] and incidence of lung cancer metastasizing to bone is found to be high [5]. Irrespective of whether the bone lesions are osteolytic or osteoblastic; zoledronic acid, a bisphosphonate class of drug is very effective in the treatment of bone metastasis as well in the prevention of metastasis seen with advanced cancers [6].

Bisphosphonates are pyrophosphate analogs; act by binding to the hydroxyapatite and thereby accumulating in the bone and preventing osteoclastic activity. The underlying mechanism of action in bones is it first binds to the surface of bone, then gets adsorbed on mineral surfaces of the bone and later internalizing into osteoclasts, finally leading to disruption of the bone-resorbing activity of osteoclasts [8]. In addition, it suppresses osteoclast maturation as well as brings about apoptosis. In a case of metastatic bone lesions, bisphosphonates inhibit cancer cell bone matrix interaction, furthermore will hinder the cancerous invasion of bones [9]; making bisphosphonates the drug of choice to treat both osteolytic and osteoblastic metastatic lesions.

Bisphosphonates have become the popular choice in the past decade to treat postmenopausal, gluocorticoid-induced and transplant-associated osteoporosis, Paget’s disease and metastatic bone lesions due to osteotropic cancers [10]. The adverse effect profile of this class of drug includes upper gastrointestinal side effects-esophagitis, esophageal erosions, gastric ulcers; influenza-like symptoms-fever, arthralgia, fatigue, bone pain; fragile fractures of atypical nature predominantly involving femur; osteonecrosis of jaw; atrial fibrillations; renal damage-acute tubular necrosis and focal segmental glomerulosclerosis [11]. Whereas, hepatotoxicity is a very rare side effect seen due to bisphosphonates with only a few case reports to support this evidence [12-15]. As per the literature search, hepatic damage solely due to zoledronic acid is an unusual outcome; especially in the absence of any pre-existing liver disease, concomitant medication implicated to cause hepatotoxicity, evidence in favor of zoledronic acid as an attributing factor for hepatic dysfunction is scanty and so far only two case reports have been reported [16,17]. A pre-clinical study carried in rats has shown biopsy-confirmed hepatotoxicity due to zoledronic acid administration [18]. Earlier two case reports have been noted in female patients diagnosed with postmenopausal osteoporosis and Paget’s disease, demonstrating the transient rise in liver enzymes. No serious liver injury was implicated [16,17]. Compared to earlier published cases, by our knowledge, it is the first report of zoledronic acid associated hepatic injury in a male patient suffering from cancer. Through literature search displayed no report of zoledronic acid associated liver injury from Indian subcontinent till date.

The mechanism by which zoledronic acid causes hepatotoxicity remains elusive, yet some theories to support this uncommon finding can be stated as follows: First, the bisphosphonates induce acute phase response mediated by active production of interleukin-6, tumor necrosis factor alpha (TNFα), and pro-inflammatory cytokines from the T-cells and macrophages. These cytokines mainly TNFα has been suspected to explain drug induced-liver injury; TNFα is involved in the activation of various intracellular and apoptotic pathways, which inhibit liver cell proliferation. Moreover, TNFα along with some other pathways - IκB kinase, reactive oxygen species, and stress-activated protein kinases/Jun amino-terminal kinases pathway promotes apoptosis of liver cells [19,20]. Second, amino-bisphosphonate like
Bisphosphonates inhibit prostate and breast carcinoma cell proliferation 
and apoptosis under normal physiological conditions. The alteration in 
protein prenylation might be a contributing factor for liver injury [11].

In this case, after duration of 10 months of uneventful chemotherapy, there was a sudden elevation in aspartate aminotransferase, alkaline transaminase (ALT), alkaline phosphatase (ALP), and direct bilirubin (Figs. 3 and 4) in January 2015. Administration of zoledronic acid was stopped and it was not re-administered; though calcium tablets were continued. Later during follow-up, laboratory investigations exhibited liver enzymes within the normal range. Furthermore, the causal relationship was established using Naranjo’s algorithm (score - 6) and Roussel Uclaf Causality Assessment Method (score - 5), displayed a “probable” and “possible” association [21-23]. Furthermore, Hartwig’s severity scale [24,25] and Thornton’s preventability scale [26] demonstrated adverse drug reaction to being moderately severe and not preventable, respectively. The other risk factors-alcohol use, age >55 years, concomitant hepatotoxic drugs, hepatitis B, hepatitis C, a recent history of hypotension, shock or ischemia within past 2 weeks, primary biliary cirrhosis, sclerosing cholangitis were excluded out. Every drug has its own particular mechanism implicated for more-or-less liver injury. In view of less prominent features in favor of liver injury, asymptomatic ALT ≥8 N or a ≥1.5-fold elevated direct bilirubin along with raised ALT levels can be considered as a diagnostic [27]. The greater rise in ALP can be attributed to both bone metastasis and liver injury and it is very hard to differentiate. Neither liver biopsy was done nor rechallenge of zoledronic acid was executed. Moreover, rapid improvement observed in laboratory values of liver enzymes following drug withdrawal raises the susceptibility of drug-induced liver damage. Consensus supports if there is a decline in >50% of liver enzymes within 30 days following cessation of suspected drug and it is drug-induced injury [28].

CONCLUSION

Drug-induced hepatotoxicity due to nitrogen-containing bisphosphonates particularly zoledronic acid is a rare occurrence; since a causal relationship was successfully established in this case, hence it will be wise to do continuous monitoring of LFTs during zoledronic acid administration. Every individual drug has its own trademark pattern of liver injury and with only handful previous case reports to support zoledronic acid induced hepatic damage; it should be advised to identify the adverse event early and preventive actions taken soon to delay further progression. If additional studies are done in regard to pharmacokinetic properties of zoledronic acid in genetically predisposed population, it will add a valuable tool to do a confirmatory diagnosis. To sum up, vigilant monitoring along with timely assessment and management can prevent the occurrence of irreversible liver damage.

REFERENCES