IN VITRO ANTIOXIDANT AND IN VIVO HEPATOPROTECTIVE ACTIVITY OF ETHANOL EXTRACTS FROM THE BARK OF SHOREA ROBUSTA (DIPTEROCARPACEAE) AGAINST CARBON TETRACHLORIDE-INDUCED LIVER TOXICITY IN RATS

DIPTANU BISWAS1*, SHIVRAJ GOUDA T2, NARAYANASAMY LACHMANAN GOWRI SHANKAR3

1Department of Pharmacognosy, Creative Educational Society’s College of Pharmacy, Kunoor, Andhra Pradesh, India. 2Department of Pharmacology, NET Pharmacy College, Raichur, Karnataka, India. 3Department of Pharmacognosy, Prime College of Pharmacy, Palakkad, Kerala, India. Email: diptanu69@gmail.com

Received: 23 July 2016, Revised and Accepted: 28 July 2016

ABSTRACT

Objective: The study is designed for the evaluation of in vivo hepatoprotective and in vitro antioxidant activity of ethanol extracts from the bark of *Shorea robusta* (EESR) (*Dipterocarpaceae*) by carbon tetrachloride (CCl4) induced hepatotoxicity in rats.

Methods: EESR was evaluated for hepatoprotective activity in rats by inducing liver damage by CCl4. The antioxidant activity of EESR was assayed by various in vitro antioxidant methods and activities were compared to standard ascorbic acid.

Results: Ethanol extracts at an oral dose 200 mg/kg and 400 mg/kg exhibited a significant (*p<0.005*) protective effects by lowering the level of serum glutamic oxaloacetic transaminase, serum glutamic pyruvic transaminase, alkaline phosphatase, serum bilirubin, total cholesterol, and increasing the level of total proteins as compared to silymarin (50 mg/kg) used as positive control. The extracts exhibit significant antioxidant activity in various in vitro antioxidant models.

Conclusion: From these studies, we are concluding that, the EESR have potent hepatoprotective effects and have antioxidant properties, hence can be used as a natural product against liver damage.

Keywords: Antioxidant, Carbon tetrachloride, Hepatoprotective, *Shorea robusta*.

© 2016 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) DOI: http://dx.doi.org/10.22159/ajpcr.2016.v9i6.14271

INTRODUCTION

Shorea robusta is a large such deciduous tree seldom quite leaflets found extensively in North East and Central India [1,2]. Bark is reddish brown-gray in color, smooth and longitudinally a fissured. The plant is traditionally used in dysentery for the plaster of fumigation. It is commonly administrated for weak digestion, gonorrhea and as an aphrodisiac [3-5]. Scientifically, the plant has been reported on various activities such as analgesic [6,7], antinociceptive, anti-inflammatory [8,9], oxidative stress [10], wound healing [11,12], and antiallers [13]. Few novel compounds also isolated from various parts of the plants like a new flavonoids 3,7-dihydroxy-8-methoxy flavones-7-O-α-L rhamnopyranosyl (1→4)-α-L rhamnoglucoside pyranosyl (1→6) β-glucopyranosyl has been isolated from the seeds of *S. robusta* [14]. Two terpenoids have been isolated from the resin of *S. robusta* namely 3, 25-epoxy-1, 2, 3, 11-tetra-hydroxyurs-12-en-28-oic acid and 3, 25-epoxy 1, 2, 3-tri-hydroxyurs-12-en-28-oic acid [15].

The liver is a glandular organ of the body which plays a key role in the metabolism of carbohydrates, lipids, protein and detoxifying xenobiotics, and drugs. Thus, the liver has a chance to get injured due to its chronic exposure to drugs, environmental toxicants, and xenobiotics [16]. Liver diseases are a global problem and synthetic drugs available for the treatment of liver disorders are believed to have serious adverse effects on the biological system [17]. Numerous medicinal plants and their formulations are used for liver disorders in ethnomedical practice as well as the traditional system of medicine in India [18]. The liver is a major organ attacked by reactive oxygen species and primary cells are subjected to oxidative stress-induced liver injury. Antioxidant substances protect the liver from various oxidative damages [19]. Our aim is to find out the hepatoprotective activity of ethanol extracts from the bark of *S. robusta* (EESR) in carbon tetrachloride (CD4) induced hepatotoxicity in rats. Antioxidant activities of the extracts were also evaluated to test whether the drug has antioxidant potential or not.

METHODS

Plant materials

Barks of *S. robusta* were procured from wild source of the forest of Tripura. The plant material was identified and authentified by Prof. P. Jayaraman, Director plant anatomy center Tambaram, Chennai, with reference number (PARC/2012/1276). The specimen is preserved at herbarium of the institute.

Preparation of the extracts

Coarsely powdered dried bark (500 g) was extracted up to exhaustion with petroleum ether, chloroform and ethanol (70%) using soxhlet apparatus successively. The ethanol extracts thus obtained was dried under reduced pressure yielding 22% which was selected for the study.

Experimental animal

Wister albino rats of either sex were used throughout the experiments and mice was used for acute toxicity studies. After randomization into various groups and before initiation of the experiment, the rats were acclimatized for a period of 7-day-standard environmental conditions such as temperature (26±2°C), relative humidity (45-55%), and 12 hrs. Dark/light cycles were maintained in the quarantine. All the animals were fed with synthetic diet and water was allowed ad-libitum under strict hygienic condition. The entire animals were utilized for these studies and used according to the protocol approved by (No. IAEC/ CESCOP/2016-07) Institutional Animal Ethics Committee.
Acute toxicity study
The acute toxicity for EESR was determined in albino mice which were maintained under standard conditions. The animals were fasted overnight before the experiment. Acute oral toxicity-acute toxic class method (OCED Guideline no. 423, Annexure-2d) adopted by Committee for the Purpose of Control and Supervision of Experiments on Animals, Government of India was followed for toxicity studies. There is no mortality was observed after oral administration of 2000 mg/kg of EESR [20]. Common side effects such as mild diarrhea, weight loss and depression of treated groups were recorded within 7 days of observation [21].

CCl\textsubscript{4} induced hepatotoxicity
In the dose-response experiment, albino rats were randomly assigned into 5 groups consisting of 6 animals in each group. Group I serve as (−ve) control and were received 1 ml 2% acacia solution post-portal (PO) for 5 days. Group II serves as (+ve) control received distilled water for 5 days. Group III received standards silymarin/kg body weight (B.W), for 5 days PO mixing with 2% acacia solution. Group (IV and V) receiving EESR 200 mg/kg and 400 mg/kg P.O for 5 days by mixing with 2% acacia solution. Group I received olive oil 1 ml/kg B.W, I.P. Group II-V received CCl\textsubscript{4}, at a dose 2 ml/kg B.W, by mixing with olive oil (1:1) on the 2nd and 3rd day, after 30 minutes of administration 50 mg/ kg silymarin [22], 200 mg/kg and 400 mg/kg of EESR, respectively. Blood samples were collected on the 6th day by retro-orbital plexus for evaluating the various biochemical parameters such as serum glutamic oxaloacetic transaminase (SGOT), serum glutamic pyruvic transaminase (SGPT), alkaline phosphatase (ALP), serum bilirubin, serum cholesterol, and total protein. They were determined by using biochemical kits of Agape. by using Mispa semi auto analyzer of Agape made. The animals were sacrificed; livers were isolated and washed with normal saline. Isolated livers were stored in 40% formalin solution and proceeded to histopathology for evaluation of the detail hepatic architectural changes in each group microscopically [23,24].

Assessments of liver function
Assessment of liver function was done by collecting blood from retro-orbital punctures and centrifuge at 4000 rmps for 15 minutes. Then, after separating the serum various biochemical parameters such as SGOT, SGPT, ALP, total cholesterol, total protein, and total bilirubin [25,26] were evaluated using Mispa semi auto analyzer of Agape.

Histopathology
Histopathological studies were done by isolating the liver to check the cellular damage to the liver cells and hepatic veins. Sections were prepared and stained with hematoxylin and eosin dye for photographic studies.

Antioxidant activity
2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity
The free radical-scavenging activities of all samples were being estimated in terms of hydrogen donating or radical scavenging ability. Radical scavenging ability was estimated using the stable radical DPPH. A solution of 0.1 mM DPPH (Himedia, Mumbai) was prepared in ethanol; 1.0 ml of this solution was being added to 3.0 ml of all the extracts solution in water at different concentrations (1-10 µg/ml). Portions (2.5 ml) have mixed with distilled water (2.5 ml) and 0.1% ferric chloride (0.5 ml). The absorbance (OD) was being measured at 700 nm. L-ascorbic acid was used as a reference standard [30]. The results are expressed as IC\textsubscript{50} or inhibitory concentration 50 value.

Nitric oxide scavenging activity
Nitric oxide scavenging activity of extract was determined using Griess reagent (1% sulfanilamide, 2% phosphoric acid and 1% naphthylethenediamine dihydrochloride). Reaction mixtures containing 3 ml of sodium nitroprusside (10 mmol) in phosphate buffer saline and test extract (1-10 µg/ml) were incubated at 25°C for 150 minutes. Control is also prepared by using 3 ml of sodium nitroprusside in ethanol which is used as solvent to dissolve the extract and allowed for incubation. After incubation, 0.5 ml of Griess reagent was added and absorbance was measured at 546 nm using UV-visible spectrophotometer [28]. The IC\textsubscript{50} value was determined by conventional formula.

Super oxide scavenging activity
Add 100 ml riboflavin (20 µg) solution, 200 ml EDTA (12 mmole) solution, 200 ml methanol and 100 ml nitrobutehtarazinol (61 mg) solution in a test tube. The reaction mixture was being diluted up to 3 ml with phosphate buffer (50 mM, pH 7.6). The absorbance of the mixture solution was measured at 560 nm after illumination for 15 minutes, phosphate buffer was used as blank. The optical density (OD) was being taken as control reading. Then to different concentrations of samples (1, 2, 4, 8 and 10 µg/ml) 100 µg/ml and add above reaction mixture dilute up to 3 ml with phosphate buffer solution. The absorbance of the solution was measured at 590 nm. L-ascorbic acid was used as a reference standard. Decreased value of absorbance of the reaction mixture indicates an increase in super oxide anion scavenging activity [29].

Reducing power method
Add different doses of sample(s) in 1 ml of ethanol to get 1 µmg, 2 µmg, 4 µmg, 8 µmg, and 10 µmg/ml concentration. A test tube was also made as a control (without any test sample). Add phosphate buffer (2.5 ml, 0.2 M, pH 6.6) and potassium ferricyanide (2.5 ml, 1%) with the sample. The mixture was incubated at 50°C for 20 minutes. Portions (2.5 ml) of trichloroacetic acid (10%) added to the mixture and centrifuged at 3000 rmps for 10 minutes. The upper layers of the mixture solution (2.5 ml) have mixed with distilled water (2.5 ml) and 0.1% ferric chloride (0.5 ml). The absorbance (OD) was being measured at 700 nm. L-ascorbic acid was used as a reference standard [30]. The results are expressed as IC\textsubscript{50} or inhibitory concentration 50 value.

RESULTS

Acute toxicity study (LD\textsubscript{50})
An attempt was made to identify LD\textsubscript{50} of EESR; acute toxicity study was carried out according to fixed dose method of OCED 423. No mortality was observed at 2000 mg/kg in mice. It was thought that 2000 mg/kg was cut off dose. Therefore, 1/10th and 1/5th (200 mg/kg and 400 mg/kg) dose were taken as effective dose for all further in vivo studies.

CCl\textsubscript{4} induced hepatotoxicity
A significant increase (*p<0.05) in biochemical parameters such as serum SGOT, SGPT, ALP, total cholesterol, total protein, and total bilirubin were observed in animals treated with carbon tetrachloride (2 ml/kg i.p.) as compared to normal and total protein level has decreased in toxic group. After treatment of drug extracts, it had significantly increased to normal level to the various biochemical parameters. The results are explained in Table 1. Parameters treatment of EESR (200 mg/kg, 400 mg/kg) and silymarin on 6 days decrease the above parameters significantly (*p<0.05) as compared to CCl\textsubscript{4}, treated group. The degree of protection was high with the higher (400 mg/kg) dose were taken as effective dose for all further in vivo studies.

Histopathology
Liver histology of normal control animal (Fig. 1) shows normal liver architecture with central veins, cytoplasm and normal polygonal hepatocytes with round nucleus and glandular cytoplasm. Blood infiltration in central veins, sinusoid space, and Kupfer cell was detected, it was noticed that most of the hepatocytes were normal. The liver with CCl\textsubscript{4} treatment (Fig. 2) shows various degrees of degeneration like ballooning of hepatocytes, infiltration of lymphocytes, and the loss of cellular boundaries with large sinusoidal space. Histopathological examinations of liver section of the rats treated with silymarin and EESR (200 and 400 mg/kg) followed by CCl\textsubscript{4} intoxication resulted in less necrosis and vacuoles formation and less degeneration of...
hepatocytes and less rearrangements (Figs. 3-5). It indicates marked protective activity of EESR at 200 mg/kg and 400 mg/kg in CCl$_4$ induced hepatotoxicity in rat’s liver.

Antioxidant activity
EESR barks possess a concentration relationship of various radical scavenging activities, viz., DPPH radical scavenging activity, nitric oxide scavenging activity, super oxide radical scavenging activity, and radical reducing power activity. Ascorbic acid was used as a standard in DPPH, nitric oxide and super oxide scavenging activity. Rutin was used as the standard for reducing power activity. The results of antioxidant activity were described in Table 2.

DISCUSSION
CCL$_4$ is a well-known hepatotoxic agents [31], the hepatotoxicity-induced by CCl$_4$ is due to its metabolites CCl$_3$ free radicals, a free radical that binds to lipoproteins and leads to peroxidation of lipids of endoplasmic reticulum [32,33]. CCl$_4$ causes hepatocyte injury that is characterized by centrilobular necrosis that is followed by hepatic fibrosis [34]. Administration of carbon tetrachloride elevated the
The results of various antioxidant activities suggest that ESSR contains a free radical scavenging power which could exert a beneficial action on biochemical parameters in rat livers. Antioxidant may be helpful in the regeneration of hepatic cell from their oxidative damage. Further research is required to find out the correct mechanism for this drug in the treatment of hepatic damage.

ACKNOWLEDGMENT

I would like to thank Principal and Management of Creative Education Society’s College of Pharmacy for providing all the facility to successfully complete my work and my senior colleague Dr. S. RV Suresh Kumar, HOD, Department of Pharmacognosy for helping me to do the work.

REFERENCES

Biswas et al.

