ABSTRACT

Objective: Oral care cosmetics are essential for all populations and are systematically used to treat oral problems. The chemicals free natural cosmetics are the choice of many people. Thus, this study was aimed to formulate and to assess the natural mouthwash (MW) solution from Lactobacillus-fermented Thai medicinal plants juice.

Methods: The selected (betel, green tea, clove, black galingale, mangosteen, and noni) plant juices were subjected to Lactobacillus plantarum mediated fermentation. The fermented plant juices (FPJ) were formulated into MW solution with different concentrations of peppermint oil. MW formulations were assessed for physical appearance, stability, and anti-microbial activities.

Results: About 2% of peppermint oil in FPJ was found as organoleptically optimum. The pH and refractive indexes of the MWs were not affected during storage and stability assessments. All the FPJ-MWs formulations showed antimicrobial activity against Group A Streptococcus, and other oral pathogens - Escherichia coli, Streptococcus aureus, and Pseudomonas aeruginosa. Moreover, black galingale, mangosteen, and noni based MW formulas also exhibited anti-candidia activity. The MW made from fermented black galingale (Kaempferia parviflora) juice was the most potent antimicrobial formulation with excellent physical stability.

Conclusion: The study concluded that fermented plant-herbal juices can be used as natural MW recipe with 2% of peppermint oil to improve the flavor and aroma. The formulations were stable, free of microbial contamination, and also exhibited antimicrobial activity. Further extended stability study and clinical trials are necessary to develop a commercial FPJ-based natural MW recipe.

Keywords: Fermentation, Formulation, Lactobacillus, Mouthwash.

© 2016 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) DOI: http://dx.doi.org/10.22159/ajpcr.2016.v9s3.14707

INTRODUCTION

Oral care cosmetics are essential for all populations and are systematically used to treat oral malodor, prevent tooth decay, and for general sanitation purposes. There are many oral care preparations among that toothpaste and mouthwashes (MWs) are most popular. The healthcare market for health care reaches about $ 4.1 billion and the significant share (73.4%) from toothpaste and toothbrushes marketing worldwide [1]. Several kinds of natural toothpaste formula and the products are available, whereas very few natural MW formulas are existing.

In general, MW is made out of any active compounds, surfactants, flavor, preservatives, and water [2]. The botanical extracts (Camellia spp., Piper betel) essential oils, antibacterials (chlorhexidine, triclosan and cetylpyridinium chloride, fluoride, salts of zinc), and phytochemicals are used as active principles in MW [3]. Some of the MW preparations contain alcohol to its freshness, but many companies claim that their products are alcohol-free and safe for alcohol-sensitive customers. The medicated MW products, which contain chlorhexidine and its salt, are commonly used and prescribed by several dentists. Even though chlorhexidine is considerably safe and efficient, it causes some adverse effects like discoloration of the teeth, desquamation of oral mucosa, taste alteration, burning sensation on oral mucosa and it even affects fibroblast and keratinocyte cell proliferation, which leads to impairment in wound healing [4]. The opposing effects of chemically formulated MW urge the researchers to work on natural products.

In Thailand, several native plants have been traditionally used as mouth sanitizer and oral medicine. Based on the usage and popularity among Thai people, we have selected six plants for the study such as betel (P. betel L.), green tea (Camellia sinensis [L.] Kuntze), clove (Syzygium aromaticum [L.] Merrill and Perry), black galingale (Kaempferia parviflora Wallich. ex Baker.), mangosteen (Garcinia mangostana L.), and noni (Morinda citrifolia L.).

Bettel (P. betel L.) is commonly used as a chewing mouth freshener and used in Thai cooking (e.g. Miang-Khum Bai Chaplu). The ethanolic extract of betel leaf has antioxidant, analgesic, antibacterial, and anti-inflammatory activity [5,6].

Green tea is obtained from the leaf of C. sinensis (L.) Kuntze. It is one of the most popular healthy herbal beverages in the world. Catechins are the most abundant active ingredient present in green tea, possessing many biological activities including antimicrobial activity [7,8].

Clove (S. aromaticum [L.] Merrill and Perry) is one of the traditional herbs used by Thai people for dental pain. Clove oil is also used in dentistry procedures as a disinfectant. It was reported that methanolic extract and flavones of clove are active against periodontal pathogens and also have anti-inflammatory, antioxidant properties [9-11].

Black galingale (K. parviflora Wallich. ex Baker) is used as a tonic to treat gastrointestinal disorders, leucorrea, and oral diseases in Thai folk medicine. Black galingale extracts exhibit anti-inflammatory effects [12].

Mangosteen (G. mangostana L.) is a famous tropical plant and called “queen of fruit” It is known for antimicrobial, antioxidant, antibacterial, anti-HIV, cytotoxic, anti-inflammatory, and anti-histamine activities [13].
Noni (M. citrifolia L.) or Yor (in Thai) is another popular health promoting herb in Thailand. Scientific reports suggest that noni can be used in dental care formulations [14,15].

Previous literature suggested that the fermentation increases the bioactivities of medicinal plants and herbs. The bioconversion process will enhance the biological activities of plants. It has been proven that many micro-organisms such as Bacillus subtilis, Lactobacillus spp., and Aspergillus spp. can augment the bioactivity of the medicinal plants [16-18].

Thus, we designed and employed the lactic acid bacteria (LAB) mediated fermentation of selected herbal plants, and formulation of fermented plant juice (FPJ) based on 100% natural MW. The properties of FPJ, formulated MW, and the antimicrobial nature of MW were evaluated.

METHODS

Plants and microbes

Betel (P. betel L.), green tea (C. sinensis [L.] Kuntze), clove (S. aromaticum [L.] Merrill and Perry), black galingale (K. parviflora Wallich, ex Baker.), Mangosteen (G. mangostana L.), and noni (M. citrifolia L.) were freshly purchased from local markets in Chiang Mai, Thailand. The plant materials were referred with herbarium specimens of Faculty of Pharmacy, Chiang Mai University to ensure the species. LAB, Lactobacillus plantarum, was obtained from Health Innovation Institute. Escherichia coli American Type Culture Collection (ATCC) 25922, Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, and Candida albicans ATCC 90028 were acquired from ATCC through a local dealer. Salmonella spp., Clostridium perfringens, and Group A Streptococcus was obtained from Health Product Research and Development Unit, Faculty of Pharmacy, Chiang Mai University.

Fermentation process

The plant materials were separately cleaned, chopped and decontaminated by soaking in potassium permanganate solution for 30 minutes, and then thoroughly washed with clean water. This was followed by ozone water treatment for 20 minutes. Then, plant materials were mixed with water and honey at the ratio of 3:10:1 (plants:water:honey). The mixture was inoculated with 10% of L. plantarum culture and kept for fermentation at room temperature in an anaerobic condition for 3 months. After fermentation, the fermented solution was initially filtered through the cotton sheet, followed by Whatman No.1 filter paper to obtain the fermented plants juice (FPJ). FPJ was evaluated for physical appearance, pH, and refractive indices.

Preparation of MW solution with FPJ

The model MW solutions were prepared using FPJ with different concentrations of peppermint oil ranging from 0.1% to 3.0%. The favorable concentration of peppermint oil provides the pleasant flavor, taste, and smell to formula. The peppermint oil in water served as control.

Physical properties and stability of MWs

The physical appearances of MWs were determined by the organoleptic method for color, smell, and taste. The pH of the formulations was measured by pH meter (Metrohm, Switzerland). The refractive indices of the formulations were measured by a refractometer (ATAQO, Japan; model: 1T) at 25°C. Physical stability of the MWs was studied in two phases such as (i) accelerated stability study by heating-cooling cycle (incubated at 4°C and 45°C for 24 hours each; 6 cycles) and (ii) short-term stability study by incubating the MW preparations at 4°C, 30°C and 45°C for 28 days. Then, the samples underwent a physical examination, pH, and refractive index assessments.

Microbiological safe

The MW preparations were analyzed for microbial contamination. The samples were assessed for the total microbial count, yeast and mold, MPN collorims, E. coli, Salmonella spp., S. aureus, Clostridium perfringens, and P. aeruginosa by a standard plating method. Tryptic Soy Agar and Sabouraud Dextrose Agar media (HiMedia) were used for bacterial and yeast and mold culturing, respectively [19].

Antimicrobial activity of MW

The MWs were screened for antimicrobial activity against E. coli, S. aureus, P. aeruginosa, Group A Streptococcus, and C. albicans by minimum inhibitory concentration (MIC) method (EUCAST) [20,21]. Briefly, MW samples were diluted with phosphate buffer saline and treated against test organisms, and inoculated at 37°C for 24 hr. After incubation, the MIC (in terms of dilution) of MW samples against test organisms was recorded.

Statistical analysis

All the values were denoted as means±standard deviation. Data were analyzed using SPSS 17.0 for windows® (2009 SPSS Inc., Chicago, IL, USA) by analysis of one-way analysis of variance. Differences were considered as significant at p<0.05.

RESULTS

After the fermentation of the six plants by L. plantarum, the FPJ were filtered and a free-flow liquid with characteristics smell was obtained. The physical appearance, pH and refractive indices of FPJs are shown in Table 1. The pH of FPJs was in the range of 2.97-3.97, and the refractive index was in the range of 1.33-1.35. The fermented juices of betel, green tea, clove, black galingale, mangosteen, and noni appeared to be clear yellow, clear orange, brown, reddish orange, reddish brown, and bright orange color, respectively. The smell of the FPJs varied depending on the raw material, and the taste of the FPJs was mostly acidic (Table 1).

The FPJ based MWs were formulated with different concentrations of peppermint oil (0.1-3.0% w/w) and the color, aroma, and taste were determined by organoleptic method (data not shown). Based on the evaluation, FPJ-MW formulation with 2% of peppermint oil was selected for further analysis, and 2% peppermint oil in water was used as a control. The physical appearance, pH and refractive indices of selected FPJ-MW were shown in Table 2. The appearances of FPJ-MWs were as same as respective FPJs. The pH of FPJ-MWs was in the range of 2.814-3.753; there was a slight change in pH of FPJ-MWs compared to FPJs. The pH of control formula was 6.98. The refractive indices of FPJ-MWs were in the range of 1.33-1.35, and we noticed a slight change to FPJs. The pH of FPJ-MWs was in the range of 2.97-3.97, and the refractive index was in the range of 1.33-1.35. The fermented juices of betel, green tea, clove, black galingale, mangosteen, and noni appeared to be clear yellow, clear orange, brown, reddish orange, reddish brown, and bright orange color, respectively. The smell of the FPJs varied depending on the raw material, and the taste of the FPJs was mostly acidic (Table 1).

The pH of FPJ-MWs were formulated with different concentrations of peppermint oil (0.1-3.0% w/w) and the color, aroma, and taste were determined by organoleptic method (data not shown). Based on the evaluation, FPJ-MW formulation with 2% of peppermint oil was selected for further analysis, and 2% peppermint oil in water was used as a control. The physical appearance, pH and refractive indices of selected FPJ-MW were shown in Table 2. The appearances of FPJ-MWs were as same as respective FPJs. The pH of FPJ-MWs was in the range of 2.814-3.753; there was a slight change in pH of FPJ-MWs compared to FPJs. The pH of control formula was 6.98. The refractive indices of FPJ-MWs were in the range of 1.33-1.35, and we noticed a slight change in the refractive indices of FPJ-MWs than their respective FPJs. The refractive index of control formula was 1.40 (Table 1).

The stability of FPJ-MWs has been calculated by accelerated stability study and short-term stability study. The accelerated stability study

<table>
<thead>
<tr>
<th>Plant used</th>
<th>Physical appearance</th>
<th>pH</th>
<th>Refractive index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betel</td>
<td>Clear yellow</td>
<td>Acidic</td>
<td>3.01</td>
</tr>
<tr>
<td>Green tea</td>
<td>Clear orange</td>
<td>Acidic</td>
<td>3.15</td>
</tr>
<tr>
<td>Black galingale</td>
<td>Reddish orange</td>
<td>Hot and acidic</td>
<td>2.97</td>
</tr>
<tr>
<td>Mangosteen</td>
<td>Reddish brown</td>
<td>Astringent</td>
<td>3.97</td>
</tr>
<tr>
<td>Noni</td>
<td>Clear orange</td>
<td>Acidic</td>
<td>3.32</td>
</tr>
</tbody>
</table>

Table 1: Physical properties of the Lactobacillus-fermented plant juices
results were revealed in Table 3. There was a minor change in physical appearance, and pH of some FJP-MWs was observed, whereas the refractive indices remained unchanged. The pH of the formula 2 (green tea) was reduced and became more acidic than other preparations.

The MW formulas made with FJP of betel, green tea, black galingale, and noni became more opaque (Table 3). The short-term stability evaluation of FJP-MWs was studied at three different temperatures (4°C, 30°C and 45°C). The results were represented in Fig. 1. No significant changes were observed among the formulas, except the Formula 1 (betel based FJP) which became significantly acidic (p<0.05), whereas Formula 5 (mangosteen-based FJP) was found to be more stable regarding fluctuation in pH (Fig. 1).

The microbial stability of the FJP-MWs was also tested. None of the formulation was found with analyzed harmful microbes (Salmonella spp., S. aureus, C. perfringens, and P. aeruginosa). In all the formulas, bacterial content was noted especially in F6 (9.8×10^3). Except F4 (9.1×10^3), all other formulas have not shown any yeast and mold load. The MPN values of the FJP-MWs were least and are in acceptable range (Table 4).

The antimicrobial activities of FJP-MWs were analyzed by MIC method. The results indicated that some of the FJP-MWs exerted the antimicrobial activity against all the test microbes. The MW Formulas 2 and 2 were not active against C. albicans. The Formula 4 (black galingale-based FJP-MW) showed the best antimicrobial activity against tested microorganism except C. albicans, while Formula 6 (noni-based FJP-MW), showed potent activity against E. coli and C. albicans (Table 5).

DISCUSSION

The selected plants were fermented with L. plantarum and recovered the FJP. The fermentation process enables the breakdown of complex phytochemicals into a simpler form, which further facilitates the percutaneous absorption. For example, conversion of flavonoid glycoside to flavonoid aglycone forms by β-glucosidase. In this study, fermentation was mediated by L. plantarum, thus the resultant product with low pH because of the production of lactic acid (Table 1). The refractive index of liquid products can be used as an indicator of microbiological stability since the microbial growth affect the refractive index by changing the content of sugar as they grow. The refractive index values are constant, for example, the refractive index of water (at 25°C), honey, and peppermint oil is 1.333, 1.484-1.504, and 1.460-1.467, respectively. Thus, the refractive index of FJP was recorded (Table 1).

In this study, FJP-MW formulations were prepared only with FJP and peppermint oil. Peppermint oil is well known for the phytochemical content and antioxidant, antimicrobial property [22-24]. The anti-oral pathogenic property and application of peppermint oil in dentistry has been reported [25,26]. The concentration of peppermint oil is crucial for MW solution preparation. The optimum concentration of peppermint oil was found as 2%. The right level of the peppermint oil provided the pleasant flavor, refreshment, and also blind the sour-acidic smell of the FJP (Table 2). The formula becomes bitterer when increase the concentration of peppermint oil. The fermentation facilitates the formation of miscible peppermint oil and water (from FJP) mixture, possibly due to the formation of bioactive surfactants. The pH and refractive index of the FJP-MWs were not significantly affected by the addition of 2% of peppermint oil with raw FJP (Table 2). The stability study results indicated that all the tested FJP-MWs were stable regarding pH and refractive index except Formula 1 (Table 3 and Fig. 1). Some of the FJP-MWs (F1, 2, 4, and 6) became more opaque, due to the emulsification of peppermint oil (Table 5).

Chavibetol and allylpyrocatechol from betel leaf were exhibiting potent antioxidant activity. Antimicrobial activity of piper betel extract and MW preparation was already reported [27]. Moreover, no physical sign and histological changes were observed after 1 month of allylpyrocatechol supplementation (25 mg/kg) in mice [28].

Magalhães et al. [7] reported that green tea extract has an ability to reduce dentin erosion and abrasion by inhibiting the matrix metalloproteinase enzyme (MMP; enzymes that degrade collagen, and cause dental erosion) in saliva, and strengthen the dental tissue. A green tea based MW prevents the adherence of microbes in dental suture after extraction of the third molar [8]. The dentifrice (dental preparations for teeth cleaning and polishing) containing green tea catechin reduce the inflammatory markers that are indicators of lipid peroxidation and oxidative protein damage in gingival tissue [29].
The methanolic extract of clove demonstrated the antimicrobial activity against periodontal pathogens, Prevotella intermedia and Porphyromonas gingivalis with MIC of 156 and 625 mg/ml, respectively. Whereas, isolated flavones from clove (kaempferol, and myricetin) showed high antimicrobial activity against P. intermedia and P. gingivalis with MIC of 20 mg/ml. Furthermore, ethanol extract of clove exerted anti-inflammatory and anti-nociceptive activity [10]. The tannins and flavonoids of clove inhibit phosphodiesterase and prostaglandin activity [30], and eugenol, hydrolysable tannins, and flavonoids are attributed to the antioxidant ability of clove [31]. The extract of black galingale decrease rat paw edema comparable to indomethacin and also strongly inhibits PGE$_2$ release with IC$_{50}$ of 9.2 mg/ml [12]. Murray et al. [13] reported the efficiency of noni juice as an endodontic irrigant.

ACKNOWLEDGMENTS

We gratefully acknowledged the financial supports and/or in-kind assistance from Project Funding of National Research University - Chiang Mai University (NRU - CMU) and National Research University - Office of Higher Education Commission (NRU - OHEC), Ministry of Education, Thailand, Chiang Mai University (CMU). The authors also wish to acknowledge the Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand.

REFERENCES

