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ABSTRACT

Objective: Casuarina junghuhniana Miq. is a well-known multipurpose tree belonging to family Casuarinaceae. This tree has the ability to sustain in 
different edaphic and extreme environmental conditions. The root extract of this tree is a rich source of potential secondary metabolites. Therefore, 
the main objective of this study is to isolate fungal root endophyte from this tree and to determine its bioactive compound which can be utilized in 
agriculture and pharmaceutical industries.

Methods: C. junghuhniana Miq. root samples were collected from the State Forestry Research Institute, Neyveli (Vridhachalam Research Range, 
Cuddalore District). Isolation of fungal endophyte was carried out using potato dextrose agar medium. The qualitative and quantitative phytochemicals 
screening and enzyme assays were carried out using standard procedures. Antimicrobial assay was tested against different pathogens using well 
diffusion method. Further, the phytochemicals in the root extract were evaluated using Fourier transform infrared (FTIR), high performance liquid 
chromatography (HPLC), and gas chromatography-mass spectrometry (GC-MS) studies.

Result: Among the isolated endophytes, the dominant isolate (CJN5) was identified as Aspergillus sp. which showed positive result in the production of 
industrially important enzymes, namely, cellulase, lipase, and amylase. The qualitative screening revealed the presence of various phytoconstituents. 
Total phenolic content of culture filtrate extract (CFE) (208.20±2 mg/g) was found higher than culture mycelium extract (CME) (165.5±3 mg/g). 
The total flavonoid content of CFE (25.95±2 mg/g) was also found higher than CME (3.59±2 mg/g) using respective standards. Antimicrobial 
activity showed maximum zone of inhibition against Pseudomonas aeruginosa (bacterial pathogen) (24±0.1 mm) and Fusarium oxysporum (fungal 
phytopathogen) (34±0.2 mm). FTIR analysis showed the presence of varied functional groups. HPLC study revealed the presence of gallic acid and 
salicylic acid. Several peaks were obtained in GC-MS analysis which indicates the presence of different secondary metabolites.

Conclusion: Aspergillus sp, isolated from the root of C. junghuhniana Miq. is a promising source of bioactive compounds which can be utilized in 
agriculture and pharmaceutical industries.

Keywords: Endophyte, Casuarina junghuhniana, Phytochemical, Antimicrobial, High performance liquid chromatography, Gas chromatography-mass 
spectrometry.

INTRODUCTION

Emergence of new diseases due to rapid resistance of the existing drugs 
against harmful pathogenic microorganisms has drawn an indisputable 
need for biologically active secondary metabolites [1]. An intensive 
search for effective antimicrobial agents can be pursued by exploring 
new niches and habitats [2]. In recent past, endophytes represent 
a diverse group of microbes which inhabits in special and unusual 
environmental conditions, making them a potential source for new 
drugs for medicinal and agricultural use [3].

Endophytes are microorganisms that reside within a healthy living 
plant tissue without causing any substantive negative effect to the 
host plant [4,5]. Endophytes have symbiotic relationship with their 
host [6]. Several studies revealed that the endophytic fungus is able to 
produce bioactive compounds similar to that of its host plant [7]. As 
natural selection favors the evolution of potential endophytic microbes, 
endophytes are producers of various bioactive secondary metabolites 
that protects the host plants from pest, pathogenic organisms, herbivores 
and insect attacks [8,9]. In comparison to plants, microbial source of 
biologically active compounds are easier and more economical in case 
of large-scale production [10]. Therefore, endophytic microorganisms 
are promising source of novel bioactive compounds for pharmaceutical, 
medicinal, and agricultural applications [11,12].

Survey of many tree species over three decades showed that 
colonization of endophytic fungi is ubiquitous. The number of 

endophytic microorganisms residing within the host depends on biotic, 
abiotic, and various environmental factors [13]. Phomopsis sp., a fungal 
endophyte, isolated from various tree species such as Pinus sp., Acer 
sp., and Plumeria sp. are reported to be a rich source of secondary 
metabolites due to which it exhibits strong antimicrobial activity 
thereby it protects the host plant from disease causing pathogen [14].

Casuarina junghuhniana Miq. is an exotic, fast growing actinorhizal tree 
which belongs to the family Casuarinaceae. It is a drought tolerant plant 
which can withstand varied soil type and wide range of pH. It is known 
to be rich in various phytoconstituents such as alkaloids, carbohydrates, 
triterpenoids, phenols, flavonoids, tannins, and steroids. This tree crop 
provides land reclamation, dune stabilization, vegetative shelter bed, 
bioshield and can improve soil fertility in tropical and subtropical 
regions [15]. In recent past, it is gaining its value as an important 
agroforestry species and also used in intercropping with many short-
term agricultural crops, vegetable and also with medicinal plants [16]. 
This tree crop is extensively used for pulping in paper industries as that 
of Casuarina equisetifolia [17].

Hence, the objective of this study is to isolate endophytic fungi 
from the root of C. junghuhniana Miq. and to screen the qualitative 
and quantitative phytochemical constituents and to study their 
antimicrobial activity against phytopathogens. Further, the production 
of extra cellular enzyme by the potential isolate was assayed. Fourier 
transform infrared (FTIR), high performance liquid chromatography 
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(HPLC), and gas chromatography-mass spectrometry (GC-MS) analysis 
were carried out to characterize the presence of bioactive compounds.

METHODS

Source of endophytic fungi
The plant root material of the C. junghuhniana Miq. was collected from 
the State Forest Research Institute, Neyveli (Vridhachalam Research 
Range, Cuddalore District), Tamil Nadu. The root samples of the plant 
were collected in random manner at the plantation site, kept in a sterile 
polythene bags, and then stored at 4°C until further isolation process 
was conducted. Identification (authentication) of the plant samples 
were confirmed at Botanical Survey of India (BSI) Coimbatore, Tamil 
Nadu (Confirmation I.D No: BSI/SRC/5/23/2015/Tech/2154).

Isolation of endophytic fungi
The root samples were washed in running tap water to remove soil 
particles and adhered debris. These were rewashed in distilled water. 
The tissue segments were sterilized using the modified method of [18] 
Fisher et al. (1993) and were individually inoculated in Petri plates 
containing potato dextrose agar (PDA) medium supplemented with 
streptomycin (100 mg/L). These Petri plates were incubated at 37°C 
(room temperature) for 3 days. After attaining visible growth, the 
fungal colonies were sub cultured in PDA plates and stored at 4°C.The 
colonization frequency (CF%) and endophytic infection rate (EIR%) 
of each endophytic fungi were calculated and determined using the 
following formula [19]:

CF%=
Number of segments colonized by an endophyte

Total numbeer of segments
×100

EIR  
Number of infected segments

Total number of segments 
% =

sscreened
×100

Identification of endophytic fungi
The identification of the fungal endophyte was done on the basis of 
its colony morphology, pigmentation, spores at the hyphal tip using 
standard manual [20].

Fermentation and extraction
Two or three pieces of agar plugs were cut out from the culture plate 
and were inoculated in a 250 ml Erlenmeyer flask containing 150 ml 
potato dextrose broth for 21 days at 30°C. The fungal broth culture was 
filtered to remove the mycelium. The filtrate was extracted with ethyl 
acetate solvent (1:1) three times. Fungal secondary metabolites in the 
mycelial mat were extracted using solvent extraction method with ethyl 
acetate as the organic solvent (14). The organic phase was evaporated 
to dryness and stored at 4°C for future usage. The culture filtrate extract 
(CFE) and culture mycelium extract (CME) were dissolved in dimethyl 
sulfoxide to obtain different concentration.

Phytochemical analysis
The ethyl acetate extract (CFE and CME) of the endophytic fungi 
was screened for the presence of the secondary metabolites such as 
alkaloids, cardiac glycosides, carbohydrate, protein and amino acids, 
phenols, flavonoids, tannins, terpenoids, phlobatannin, anthraquinone, 
gums, and mucilage by standard procedures [21].

Determination of total phenolic content (TPC)
The TPC in CFE and CME were determined using Folin-Ciocalteu’s 
colorimetric method. 0.2 ml of sample were oxidized with 0.5 N Folin-
Ciocalteu’s reagents for 4 minutes at room temperature. Then, the 
reaction was neutralized with saturated sodium carbonate (75 g/l). 
After 2 hrs of incubation at room temperature in dark, the absorbance 
of the resulting blue color was measured at 760 nm in UV-Vis 
spectrophotometer (UV 1650 PC Shimadzu). The concentration of total 
phenol was determined on the basis of calibration curve using gallic 
acid (GA). The content was expressed in milligram of GA equivalents 
(GAEs) per gram of extract studied [22].

Determination of total flavonoid content
Total flavonoid content in CFE and CME was determined using 
colorimetric method [23]. Extract samples (0.25 ml) at concentration 
of 1 mg extract ml−1 were diluted with distilled water (1.25 ml). 0.75 ml 
of 5% sodium nitrate solution was added and the sample was incubated 
for 6hrs at room temperature. 0.15 ml of 10% aluminum chloride was 
added and the resulting mixture was incubated for 5 minutes. Finally, 
0.50 ml of sodium hydroxide (1M) was added and was made up to 2.5 ml 
with distilled water, incubated for 30 minutes at 25°C. Absorbance was 
measured at 510 nm in UV-Vis spectrophotometer. The concentration 
of total flavonoid was determined on the basis of the calibration curve 
using quercetin as standard. The content was expressed in milligram of 
quercetin equivalents per gram of the extract studied.

Enzyme assay
The pure culture of the isolate was screened for the production of the 
extracellular enzyme (amylase, cellulase, lipase, laccase, and protease). 
It was assayed by the digestion of the dissolved or suspended substrate 
amended in the agar plate. After inoculation of the isolates, incubation 
of 3-4 days at 37°C produces a clear zone around the fungal colony 
which determines the production of extracellular enzymes [24].

Antimicrobial activity
Two different concentrations of CFE and CME (50 and 100 μg) were 
individually assayed against test phytopathogens. Bacteria such as 
Bacillus subtilis and Pseudomonas aeruginosa were maintained in nutrient 
agar (NA) slants and fungi such as Fusarium solani, Fusarium oxysporum, 
Macrophomina phaseolina, Alternaria alternata, Curvularia lunata, and 
Rhizoctonia solani were maintained in PDA slants for further analysis. 
This assay was carried out using well diffusion method following standard 
method [25]. PDA and NA medium were used for the assay. Gentamycin 
(100 μg) and carbendazim (100 μg) were used as positive control 
whereas ethyl acetate solvent was used as negative control. Triplicates 
were maintained for all the samples. The plates were incubated for 24 
hrs at 37°C for bacteria and 48-72 hrs at room temperature for fungal 
pathogens. Zone of inhibition was observed and measured.

FTIR spectroscopy analysis
The crude fungal extract of CFE was subjected to FTIR analysis to 
determine the different functional groups present in the sample. FTIR 
spectral system (Shimadzu, IR Affinity 1, Japan), equipped with a DLATGS 
detector with a mirror speed of 2.8 mm/seconds scan range: From 400 to 
4000/cm with a resolution of 4/cm was used for this analysis. The dried 
samples were finely grounded using potassium bromide (KBr) in 1:10 
ratio. The IR pellet was recorded in the region 4000-400/cm and the 
functional group of the bioactive substance was recorded, the resulting 
spectrum was characteristic of the organic molecules present in CFE.

HPLC analysis
Sample preparation
The ethyl acetate extract of the sample was filtered through Whatman 
No. 1 filter paper and the filtrate was evaporated to dryness. Dried 
sample was resuspended in 1 ml HPLC graded methanol by vortexing. 
The samples were further filtered through 0.45 mm membrane 
(Millipore) and were stored at 4°C for HPLC analysis. Salicylic acid (SA) 
and GA standards were prepared using HPLC graded methanol and 
used for analysis.

Chromatographic conditions
HPLC system was equipped with SHIMADZU (Kyoto, Japan). LC 20 AD 
pump, SPD 20 A- UV detector (SHIMADZU) with wavelength set at 
280 nm, LC solution software recorder (Integrator, Spectra-physics, 
Mountain view, CA). Room temperature was maintained. Reverse phase 
chromatographic analysis was carried out in isocratic condition using C-18 
reverse phase column (Phenomenex 250) (Merck, Darmstadt, Germany). 
20 μl of the prepared sample solution was injected by autosampler. Mobile 
phase used for separation was methanol:HPLC graded distilled water:1% 
acetic acid (80:20:1), 1 ml/minute flow rate, low pressure.
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Phenolic compounds present in the sample was detected on the basis of 
comparison with the retention time (Rt) of the sample with that of the 
Rt of the individual standards at similar chromatographic conditions.

GC-MS analysis
The fungal extract was subjected to GC-MS analysis to identify the 
bioactive compounds. GC-MS analysis was performed at the SAIF, 
IIT-Madras, Chennai, Tamil Nadu. The sample was subjected to GC 
and MS JEOL GC mate equipped with secondary electron multiplier. 
JEOL GCMATE II GC-MS (Agilent Technologies 6890N Network GC 
system for gas chromatography). The column (HP5) was fused silica 
50 m×0.25 mm I.D. The experimental conditions were 20 minutes at 
100°C, column temperature: 235°C for 3 min; injector temperature: 
240°C; carrier gas: Helium; split ratio: 5:4. 1 μl of the sample was 
evaporated in a split less injector at 300°C and the run time was 
30 minutes. The active phytochemical components were identified by 
gas chromatography coupled with mass spectrometry. The spectrum 
of GC-MS was analyzed using the database of the National Institute 
Standard and Technology (NIST) having more than 62,000 patterns.

RESULTS AND DISCUSSION

Endophytes are microorganisms which reside within a healthy plant, 
giving it protection against pest and pathogens. Endophytes have proven 
to be a promising source of the novel bioactive compounds with a wide 
range of biological activities. The role of endophytes as biocatalyst in the 
biotransformation process holds great importance in pharmaceutical 
industry [26]. In this study, total of twelve endophytic fungus has been 
isolated (41% sporulating and 59% of nonsporulating) from the root of 
C. junghuhniana Miq. Among which, Aspergillus sp. (Fig. 1a and b) was 
identified to be the most dominant endophyte with a higher frequency of 
occurrence (31%) and was thus selected for further studies.

Enzyme assay
Endophytic fungi are potential enzyme producers. In this study, 
endophytic fungus Aspergillus sp. was able to produce amylase, lipase, 
and cellulase enzyme (Fig. 2a-c), however, it was unable to produce 
laccase and protease enzyme. Endophytes secrete extracellular such 
as protease, amylase, lipase, cellulase, xylanase that can degrade 
plant surfaces and cell walls to promote intercellular or intracellular 
colonization [26]. Production of cellulase enzyme from fungal 
endophyte proved to be an effective alternative for large-scale, low cost 
enzyme production [27]. Lipase is extensively used in medicine and 
food industries [28,29]. Even though, amylase can be obtained from 

various sources such as plant, animal, and microorganisms, industrial 
demands are usually met by microbial sources [30,31]. Microbial 
sources are generally preferred over plant and animal sources because 
they are more economical to produce as well as more stable [9].

Phytochemical analysis
Qualitative phytochemical analysis inferred that alkaloid, cardiac 
glycoside, carbohydrate, terpenoid, phenol, flavonoid, protein, and 
amino acid were present in both CFE and CME. Tannin was present in 
CME whereas anthraquinone was found in CFE. Phlobatannin, gums, 
and mucilage were absent in both CFE and CME. In past decades, many 
important secondary metabolites were obtained from endophytic fungi. 
Biologically active secondary metabolites such as alkaloids, tannin, 
phenol, flavonoid, cardiac glycosides, carbohydrate, anthraquinone, 
and terpenoids are used in pharmaceutical and agricultural 
industries [32,33]. Phytoconstituents acts as an indicator which can be 
exploited as precursors in the development of synthetic drugs [34,35].

Total phenol and flavonoid content
The TPC of CFE and CME was determined by Folin-Ciocalteu’s method 
were reported as GAE (standard curve equation Y=0.027X+0.176, 
R2=0.994). TPC of CFE (208.20±2 mg/g) was found higher than CME 
(165.5±3 mg/g).

The total flavonoid content of CFE and CME was determined by aluminum 
chloride method were reported as quercetin equivalent (standard curve 
equation, Y=0.009X+0.136, R2=0.997). The total flavonoid content of 
CFE (25.95±2 mg/g) was found higher than CME (3.59±2 mg/g).

Phenols and flavonoid compounds are known to possess various 
bioactivities. Phenols and polyphenols are largest groups of secondary 
metabolite having antimicrobial property [36]. The number of phenolic 
groups may attribute to their relative toxicity to microorganism because of 
increase in hydroxylation causing greater toxicity [37]. The difference in the 
antibacterial activity can be attributed to the class of flavonoids (flavones, 
flavonols, flavan-3-ols, isoflavones, flavanones, and anthocyanidins) and/
or their chemical structure, specifically in regards to the position and 
number of methoxy and phenolic group within their structure [38-40].

Antimicrobial activity
Antibacterial activity of CFE and CME against B. subtilis and P. aeruginosa 
was studied. CFE showed maximum zone of inhibition against 
P. aeruginosa (24±0.1 mm) at 100 μg concentration (Fig. 3a and c) 
followed by B. subtilis (21 ± 0.3 mm). In this case, both the test bacterial 
pathogen were showing higher susceptibility when compared with 
the control. However, for 50 μg concentration B. subtilis (19±0.3 mm) 
showed higher inhibition zone than P. aeruginosa (16±0.3 mm). CME 
was found to be less efficient in comparison to CFE. Similar to CFE, 
CME also showed maximum zone of inhibition against P. aeruginosa at 
100 μg concentration (18±0.1 mm) followed by B. subtilis (10±0.2 mm). 
At 50 μg concentration P. aeruginosa (15±0.3 mm) showed higher zone 
of inhibition than B. subtilis (3±0.3 mm).

Similarly, antifungal activity was studied against phytopathogens, namely, 
F. solani, F. oxysporum, R. solani, A. alternata, C. lunata, and M. phaseolina. 
CFE showed maximum zone of inhibition at 100 μg concentration 
against F. oxysporum (34±0.2 mm) (Fig. 3b and c) followed by R. solani 
(27±0.4 mm), M. phaseolina (26±0.5 mm), F. solani (25±0.4 mm), 
C. lunata (12±0.3 mm), and A. alternata (10±0.3 mm). At 50 μg 
concentration, maximum zone of inhibition was found against R. solani 
(26±0.4 mm) which is higher than control followed by F. oxysporum 
(8±0.3 mm), A. alternata (7±0.3 mm), and C. lunata (6±0.1 mm). No 
zone of inhibition was found against F. solani and M. phaseolina. CME 
showed maximum zone of inhibition at 100 μg concentration against 
R. solani (28±0.2 mm) followed by F. solani (24±0.3 mm), F. oxysporum 
(22±0.2 mm), M. phaseolina (9±0.5 mm), A. alternata (7±0.2 mm), 
and C. lunata (5±0.4 mm). At 50 μg concentration, maximum zone of 
inhibition was found against R. solani (16±0.4 mm) followed by F. solani 
(7±0.5 mm), A. alternata (4±0.3 mm), and C. lunata (2±0.1 mm).

Fig. 1: (a) Colony morphology of CJN5. (b) Microscopic structure 
of CJN5

ba

Fig. 2: (a) Cellulase (b) Amylase (c) lipase produced by Aspergillus sp.

cba
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Several researchers have reported various secondary metabolites 
such as phenol, flavonoid, alkaloid, and terpenoids produced by 
fungal endophytes have effective antimicrobial activity. Antimicrobial 
metabolites obtained by fermentation of fungal endophytes have 
greater advantage including no destruction of the resources, large-
scale commercial production, and reliable quality [41]. In this study, it 
was found that both CFE and CME contain high phenolic concentration 
which might attribute to its antimicrobial activity. Phenolic compound 
is involved in different mode of action like inhibition of synthesis 
of nucleic acid, destabilization and permeabilization of cytoplasmic 
membrane, resulting to its antimicrobial activities [42].

FT-IR analysis
FT IR analysis of the endophytic isolate Aspergillus sp. reveals the 
presence of different functional groups in the organic fraction. 
Major peaks in the FT IR analysis (Fig. 4) showed the presence of 
alkane (2925.17/cm), OH- group (3433.44/cm), aromatic amines 
(2858.63/cm), aliphatic compound (1459.1/cm), C=O alkene 
(1611.59/cm), alkene (1727.33/cm), primary aliphatic amines 
(1031.00/cm). Existence of different potential phytochemicals in 
the fungal endophyte extract may be due to the presence of various 
functional groups. The presence of different functional groups reflects 
the complex structure secondary metabolite [43].

HPLC analysis
HPLC analysis of endophytic Aspergillus sp. revealed 4 sharp peaks 
at different Rt. Among these, two peaks were identified as GA (Rt 
2.9 minutes) and SA (Rt 3.8 minutes) (Fig. 5a-c). The presence of these 
compounds was confirmed on comparing its Rt with that of its standard 
under similar chromatographic conditions.

In plants, resistance toward pathogenic infection is achieved 
through protective physical barriers or various antimicrobial 
agents. It is reported that SA is one of the key signaling molecule 
in multiple signaling transduction pathway for disease resistance 
in Arabidopsis sp [44]. Endophytic bacteria Achromobacter sp. 
produces SA and inhibits growth of pathogenic fungi [45]. GA 
involves in irreversible changes in membrane properties in respect 
to hydrophobicity changes, formation of pore in the cell membrane 
or local ruptures that causes leakage of the essential cellular 
constituents. [42]. Fungal endophyte Phomopsis sp. is reported to 
produce GA which possess antimicrobial property [46].

GC-MS analysis
Several peaks were obtained in GC-MS analysis of endophytic 
fungus Aspergillus sp. indicating the presence of different secondary 
metabolites (Fig. 6). These bioactive compounds were identified using 
NIST database on comparison with actual mass spectral obtained. The 
chromatogram determines the presence of 4,5,7-Trihydroxy isoflavone 
(80.2%), Estra-1,3,5(10)-trien 17 a-ol (5.4%), Phytol (77.8%), 4H-1-
Benzopyran 4-one,2-(3,4-dimethoxy phenyl-7-hydroxy (89.9%), (E)-9-
Octadecenoic acid ethyl ester (6.7%), Eicosanoic acid, methyl ester 
(13.1%), and 2- Cyclohexen 3,6, diol -1,one,2 tetradecenoyl(6.7%). 
Biological activities of all these compounds are discussed in Table 1. 
Among all the compounds, it was found that only two compounds, 
Estra-1,3,5 (10)-trien 17 a-ol and 4H-1-Benzopyran 4-one,2-(3,4-
dimethoxy phenyl-7-hydroxy are reported to possess antimicrobial 
properties 4H-1-Benzopyran 4-one,2-(3,4-dimethoxy phenyl-7-
hydroxy, a homoisoflavonoid is a phenolic compound whereas Estra-
1,3,5(10)-trien 17 a-ol is steroid in nature [47,48].

CONCLUSION

This study infers that Aspergillus sp. was the predominant endophytic 
fungi isolated from C. junghuhniana Miq. Qualitative phytochemical 
analysis revealed the presence of potential secondary metabolite of 
which predominantly were the presence of polyphenolic compounds, 
specifically SA and GA attributing for the antimicrobial activities 
in addition to the bioactive compounds analyzed using GC-MS. 
Further, the endophyte is also capable of producing enzymes such 
as lipase, cellulose, and amylase. Thus, the potential bioactive fungal 
endophyte can be effectively applied in the field of pharmaceutical 
and agricultural industries after standardization of various strain 
improvement traits.

Fig. 4: Fourier transform infrared spectrum of Aspergillus sp.

Fig. 3: (a) Aspergillus sp. showing maximum zone of inhibition 
against Pseudomonas sp. (b) Aspergillus sp. showing maximum 

zone of inhibition against Fusarium oxysporum. (c) Antimicrobial 
activity of culture mycelium extract and culture filtrate extract at 

100 µg concentration

ba

c
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Fig. 6: Gas chromatography-mass spectrometry analysis of Aspergillus sp.

Table 1. Phytochemical compounds identified in ethyl acetate extract of Aspergillus sp.

S. No. Retention 
time (Rt) (minutes)

Compound name Molecular 
formula

Molecular 
weight  
(g/mol)

Compound 
nature

Biological activities

1 17.4 4,5,7-Trihydroxy isoflavone C15H10O5 270.24 Isoflavones Antioxidant, anthelmintic [49]
2 18.3 Estra-1,3,5 (10)-trien 17 a-ol C19H26O2 286.40 Steroid Antioxidant, anti-inflammatory, 

antifungal, antibacterial [48]
3 19.13 Phytol C20H40O 296.53 Acyclic 

diterpene 
alcohol

Antidepressant, 
anti- inflammatory 
cytotoxicity [50]

4 19.35 4H-1-Benzopyran 4-one, 
2-(3,4-dimethoxyphenyl-7-hydroxy

C21H14O2 298.33 Phenolic 
group

Nematicide, antifungal;
antibacterial [48]

5 19.98 (E)-9-Octadecenoic acid ethyl ester C20H38O2 310.51 Ethyl ester Nematicide, hepatoprotective, 
antihistaminic, anticoronary [51]

6 21.17 Eicosanoic acid, methyl ester C21H42O2 326.55 Methyl 
ester

Antioxidant [51]

7 22.62 2-Cyclohexen 3,6, diol-1, one, 2 
tetradecenoyl

C39H80O2 580 - No activity reported

Fig. 5: High performance liquid chromatography (HPLC) analysis of standard. (a) Gallic acid, (b) Salicylic acid, (c) HPLC analysis of 
Aspergillus sp.

c

ba

https://en.wikipedia.org/wiki/Antioxidant
https://en.wikipedia.org/wiki/Anthelmintic
http://www.ebi.ac.uk/chebi/chebiOntology.do;jsessionid=8CC30C77C0914089D71FB5149E60AAE8?chebiId=25491
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