ASIAN JOURNAL OF PHARMACEUTICAL AND CLINICAL RESEARCH

BIOMARKERS: AN IMPERATIVE ACCESSION FOR DIAGNOSIS OF A DISEASE AND DRUG DEVELOPMENT

MOHAMMAD GULSHAN*, NADENDLA RAMA RAO

Department of Pharmaceutics, Chalapathi Institute of Pharmaceutical Sciences, Lam, Guntur, Andhra Pradesh, India. Email: gulshan.md210@gmail.com

Received: 07 February 2017, Revised and Accepted: 28 February 2017

ABSTRACT

Biomarkers are becoming an essential part of clinical development, not least because they offer a faster alternative to the conventional drug development approach and the promise of safer drugs, in greater numbers, approved more quickly. Many of the failures happen late in clinical trials, with the consequence that expenditure in clinical drug development – already a mammoth effort requiring a huge amount of money, time, and patient is increasing. The ultimate vision is to have access to therapeutic fields, a better understanding of pathophysiology of diseases, thereby uncovering potential drug targets and biomarkers in the disease pathway. By finding molecular biomarkers of the disease, diagnosis could be improved and could reveal new information about the disease, by which a better chance for developing drugs is possible. Biomarkers can also reflect the entire spectrum of disease from the earliest manifestations to the terminal stages. In this present review, biomarkers of various diseases were enlisted to highlight the overabundance of information necessary for clinicians and scientists to have a thorough understanding of biomarkers and its ability to improve treatment and reduce health-care costs which are potentially greater than in any other area of medical research.

Keywords: Biomarkers, Disease, Pathophysiology, Therapeutics, Treatment.

© 2017 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons. org/licenses/by/4. 0/) DOI: http://dx.doi.org/10.22159/ajpcr.2017.v10i5.17559

INTRODUCTION

In 1998, the National Institutes of Health Biomarkers Definitions Working Group defined a biomarker as "a characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention" [1,2]. A joint venture on chemical safety, the International Programmed on Chemical Safety, led by the World Health Organization (WHO) and in coordination with the United Nations and the International Labor Organization, has defined a biomarker as "any substance, structure, or process that can be measured in the body or its products and influence or predict the incidence of outcome or disease" [3]. The WHO also stated that a true definition of biomarkers includes "almost any measurement reflecting an interaction between a biological system and a potential hazard, which may be chemical, physical, and biological. The measured response may be functional and physiological, biochemical at the cellular level, or a molecular interaction" [4]. Examples of biomarkers include everything from pulse and blood pressure through basic chemistries to more complex laboratory tests of blood and other tissues [5,6].

Disease-related biomarkers give an indication of whether there is a threat of disease (risk indicator or predictive biomarkers) if a disease already exists (diagnostic biomarkers), or how such a disease may develop in an individual case (prognostic biomarker). Drug-related biomarkers indicate whether a drug will be effective in a specific patient and how the patient's body will process it.

Biomarkers a measure of a normal biological process in the body, a pathological process, or the response of the body to therapy – may offer information about the mechanism of action of the drug, its efficacy, its safety, and metabolite profile. Because biomarkers can predict drug efficacy more quickly than conventional clinical end-points, they hold the potential to substantially accelerate product development in certain disease areas. And because they help to identify earlier those candidates that are likely to fail, they reduce drug development costs, giving life to the concept of "fail early, fail cheap." Biomarkers have impacted on internal decision-making, i.e., whether to move forward to the next phase of clinical development or not. The decision to move to next phase depends not only on biomarker evidence alone but also they can offer strong supporting evidence, and in the future, it will be the key data in certain programs and offers an objective, biological indicator, rather than just seeing whether the patients feel better. In the present scenario, there is no possibility of developing a new drug without simultaneously looking for biomarkers for efficacy, safety, and to measure the pharmacodynamics of the drug. Mechanistic or target biomarkers can be used in the pre-clinical or phase I trials to measure the pharmacological effect of the drug, i.e., whether the drug interacts with its receptor, enzyme, or protein target, whether it is distributed to the site where it needs to act, whether there is some

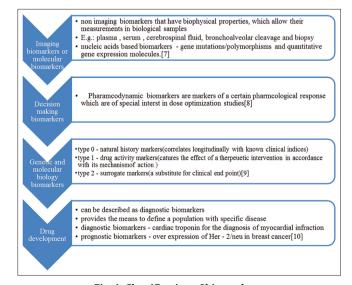


Fig. 1: Classification of biomarkers

form of downstream pharmacology, and the dose ranges, in which the drug is pharmacologically active. Hence, these types of biomarkers can be used to drive critical go/no – go decisions in drug development (Tables 1 and 2, Figs. 1-4).

At the onset of cancer, a selective protein or gene-based biomarker gets elevated or modified in body fluids or tissues. Early diagnosis of these markers can greatly improve the survival rate or facilitate effective treatment with different modalities. Although the

Technology	Method	Objective	Tissue
Genomics	SNP genotyping, positional cloning/microsatellites,	Identify susceptibility or disease-modifying	Nucleated cells,
	expression analyses	gene	diseased tissue
		Fine mapping/sequencing of disease loci	
		Identification of different expression of genes	
		and signaling pathways	
Proteomics	2DGE, MS, LC-MS, GC-MS, MS-MS, MALDI–TOF MS	Identification of low – abundance proteins,	Urine, blood,
		their subcellular location, post-translational	saliva, tissues
		modification, interactions among proteins	
Metabolomics	NMR spectroscopy, MS, infrared spectroscopy	Small molecule identification and	As above
		characterization	
Pharmacogenetics	SNP genotyping	Relate genetic makeup to drug response	Nucleated cells
Integratomics	All of the above	Use of high throughput technology to produce an integrated picture at the DNA, RNA,	All of the above
		protein, tissue, and pharmacological levels	
Bioinformatics	BLAST, hierarchical clustering, SOM	Link microarray data to biological pathways	Data from various techniques
Molecular imaging [13]	CT, MRI, PET, SPECT, biophotonic imaging	Noninvasively identify and quantify the	Patients
0 01 1		causative molecular constituents of diseased	
		tissues in time and space	

MRI: Magnetic resonance imaging, CT: Computed tomography, PET: Positron emission tomography, SPECT: Single-photon emission computed tomography, SNP: Single nucleotide polymorphism, MS: Mass spectroscopy, NMR: Nuclear magnetic resonance, 2DGE: 2D gel electrophoresis, TOF: Time-of-flight, LC-MS: Liquid chromatograph-mass spectroscopy, GC-MS: Gas chromatography-mass spectrometry, SOM: Self-organizing maps

Table 2: Five pl	hases of biomarker development
------------------	--------------------------------

Phases [14-16]	Phase 1 Preclinical exploratory	Phase 2 Clinical characterization and assay validation	Phase 3 Clinical association: Retrospective screening studies	Phase 4 Clinical association: Retrospective screening studies	Phase 5 disease control
Objective	Target biomarker identification, feasibility	Study assay in people with and without disease	Case-control studies using respiratory specimens	Longitudinal studies to predict disease	Clinical use
Site	Biomarker development laboratory	Biomarker validation laboratory	Clinical, epidemiologic centers	Cohort studies	Community
Design Sample size Validity	Cross-sectional Small Content and construct validity	Cross-sectional Small Criterion validity	Case-control Modest Predictive validity	Prospective Medium Efficacy of strategy	RCT Large Effectiveness
Result	Assay, precision, reliability, sensitivity	Reference limits, intra-individual variation	Screening characteristics, true and false+rates	ROC analyses	No needed to screen treat

RCT: Randomized controlled trial, ROC: Receiver operating characteristic

Table 3: Breaking the barriers to biomarker discovery

Barrier to cancer biomarker progress [17,18]	Emerging successful strategies to break the barrier
Failure to mechanistically tie a blood biomarker to the tumor itself	Discovery of the biomarker across a series of experimental animal tumor models
	Mechanistically showing a role in tumor genesis or a change after therapy
	Validation of the same marker using human samples
Improper sample handling and tracking; inadequate tissue fixation and	Preservation technologies for tissue and body fluid sample collection
body fluid sample preservation that generates bias, false positives, and	Uniform protocols for the collection of tissues and body fluids
false negatives	Molecular measures to verify the reservation of a biological sample
Lack of independent blinded clinical validation with proper controls for specificity and noncancer diseases	Inclusion of independent epidemiologically credentialed and matched cohorts with inflammatory disease, infectious disease, and benign tumors
Low analytical sensitivity of mass spectrometry-based detection	Nanotechnology-based methods for biomarker capture, preservation,
systems that prevent the detection/identification and measurement	and exclusion of unwanted high-abundance proteins such as albumin
of low abundance (<ng biomarkers="" early="" emanating="" from="" nl)="" stage<="" td=""><td>can amplify mass spectrometry sensitivity 1000</td></ng>	can amplify mass spectrometry sensitivity 1000
cancer	

sophisticated imaging technologies such as magnetic resonance imaging, positron emission tomography, and computed tomography have the impact of nanotechnology on their improved performance, they are however unsuitable for the early detection of cancer biomarkers or their quantification. Other approaches for cancer diagnosis based on cell morphology and microscopy (biopsies) are too not conclusive for early diagnosis of cancer. The only hope for early diagnosis of cancer in the near future is by the detection of cancer biomarkers using immunoassays/sensors that are reformed by Nanotechnology. Attractive properties of nanoparticles have miraculously lifted up the design, fabrication, and sensitivity and multiplexing of these immunoassays/sensors in biomarker detection (Tables 3-7).

CONCLUSION

Biomarkers are biological molecules wit physiological characteristics that are more closely linked to the underlying causes of health or disease. Doctors customarily answer the questions

- Is a patient really sick?
- What medicine is necessary?
- In what dosage?
- Is the patient responding to it?

Based on a variety of symptoms which are giving subjective description and uncertain relationship to the disease state are misleading. Biomarkers give doctors a more objective and quantifiable basis for clinical decision-making.

Table 4: Biomarker of cancer	disease and their	• characteristics	with examples
------------------------------	-------------------	-------------------	---------------

Cancer	Markers	Characteristics	Typical sample
Prostate	PSA, total and free	High sensitivity in all stages; also elevated from some non-cancer causes	Blood [19]
	PSMA	Levels tend to increase with age	Blood
Breast	CA 15-3, 27, 29	Elevated in benign breast conditions. Either CA 15-3 or CA 27, 29 could be used as marker	Blood [20,21]
	Estrogen receptors Progesterone receptors	Overexpressed in hormone-dependent cancer	Tissue [22] Tissue
	Her-2/neu	Only 20~30% of patients are positive to Her-2 oncogene that is present in multiple copies	Tissue [23]
Lung (non-small cell)	CEA	Used in combination with NSA to increase specificity, used also for colon cancer detection	Blood [24]
Lung (small cell)	NSE	Better sensitivity toward specific types of lung Caner	Blood [25]
Bladder	NMP-22, BTA	NMP-22 assays tend to have greater sensitivity than BTA assays	Urine [26]
Pancreatic	ВТА	Composed of basement membrane complexes	Urine [27]
Tuncicult	CA 19-9	Elevated also in inflammatory bowel disease, sometimes used as colorectal cancer biomarker	Blood [28]
Epithelial ovarian cancer (90% of all	CA 125	High sensitivity in advanced stage; also elevated with	Blood [29]
ovarian cancer)		endometriosis, some other diseases and benign conditions	
Germ cell cancer of ovaries	CA 72-4	No evidence that this biomarker is better than CA-125 but may be useful when used in combination	Blood [30]
	AFP	Also elevated during pregnancy and liver cancer	Blood [31]
Multiple myeloma and lymphomas	B2M	Present in many other conditions, including prostate cancer and renal cell carcinoma	Blood [32]
	Monoclonal	Overproduction of an immunoglobulin or antibody, usually	Blood,
	immunoglobulins	detected by protein electrophoresis	Urine [33]
Metastatic melanoma	S100B	Subunit of the S100 protein family	Serum [34]
	TA-90	Could be used to monitor patients with high risks of	Serum [35]
		developing the disease	
Thyroid	Thyroglobulin	Principal iodoprotein of the thyroid gland	Serum,
			Tissue [36]
Thyroid medullary carcinoma	Calcitonin	Secreted mainly by parafollicular C cells	Blood,
			Serum [37]
Testicular	hCG	May regulate vascular neoformation through VEGF	Serum [38]
WM	Monoclonal	The larger size and increased concentration of the monoclonal	Blood,
	immunoglobulin M	protein leads to serum hyperviscosity, the most distinguishing feature of WM	Urine [39]
Lymphomas	B2M	Present in many other conditions, including prostate cancer and renal cell carcinoma	Serum [40]
Lung (non small cell), epithelial,	EGFR (Her-1)	Binding of the protein to a ligand induces receptor	Tissue [41]
colorectal, head and neck, pancreatic, or breast		dimerization and tyrosine autophosphorylation and leads to cell proliferation	
Colorectal, lung, breast, pancreatic, and bladder	CEA	Subtle posttranslational modifications might create differences between tumor CEA and normal CEA	Serum [42]
T-ALL	РТК7	Membrane-bound surface protein of whole cells, and can be used to detect circulating tumor cells as targets	Blood [43]

PSA: Prostate-specific antigen, PSMA: Prostate-specific membrane antigen, CA 15-3, 27, 29: Cancer antigen 15-3, 27, 29, CEA: Carcinoembryonic antigen,

NSE: Neuron-specific enolase, NMP: Matritech's nuclear matrix protein, BTA: Bladder tumor antigen, CA 19-9: Carbohydrate antigen 19-9, CA 125: Cancer antigen 125, CA 72-4: Cancer antigen 72-4, AFP: Alpha-fetoprotein, B2M: Beta-2 microglobulin, TA-90: Tumor-associated glycoprotein antigen, hCG: Human chorionic gonadotropin, VEGF: Vascular endothelial growth factor, WM: Waldenstrom's macroglobulinemia, T-ALL: T-cell acute lymphoblastic leukemia, EGFR: Epidermal growth factor receptor

Table 5: Cardiovascular diseases

Name of disease	Effects	Risk score (%)	Biomarker
Homozygous familial hypercholesterolemia	Premature cardiovascular morbidity and mortality	10-20	TC, LDL cholesterol [44]
Hypertriglyceridemia/hypertriglyceridemia	Elevated levels of Lp(a)	20	Lipid profile [45]
Chronic kidney disease	Elevated levels of Lp(a)	10	Lipid profile [46]
Cholelithiasis	Gallstone formation due to cholesterol	20	LDL cholesterol and small dense
	and salts		LDL particles [47]
Hypercholesterolemia	Very high CVD risks	20	LDL cholesterol and small dense
		00.05.10014	LDL particles [48]
Atherosclerosis	Arterial obstruction, chest pain	20-25 ABCA1	PUFA and carbohydrates, serum
		Efflux	γ-glutamyl transferase activity,
			blood genomic profiling, and $\alpha 4\beta 7$ integrin [49]
Coronary heart disease	Monocytosis, high diabetics,	20	Impaired sterol efflux, efflux capacit
coronary near cuiscuse	hypertension, and chronic kidney	20	of HDL, myeloperoxidase increasing
	diseases		circulating HDL [50]
Hyperglycemia or type 1 diabetes	CVD and mortality	25	TC, TG, HDL, LDL, and
	5		anthropometric and biochemical
			parameters [51]
Dyslipidemia	Hypoperfusion, high inflammation, and	10	TC, TG, HDL, LDL, and
	low BP		anthropometric and biochemical
			parameters [52]
Atherosclerotic peripheral arterial disease	Prevalent, morbid, and mortal diseases	20 shortening	LDL cholesterol [53]
IHD	Endothalial duration unacular	of lumen 10-20	Linida abalactoral calcium and
IHD	Endothelial dysfunction, vascular inflammation	10-20	Lipids, cholesterol, calcium, and cellular debris [54]
Diastolic dysfunction and diastolic heart	Asymptomatic hypertension	20	Myocardial remodeling [55]
failure	risymptomatic hypertension	20	stybear and remotening [55]
Chronic heart failures	ADP-induced platelet aggregation,	15-20	Lipidemic, hemostasiological, and
	triglycerides, end-diastolic volume,		hemodynamic indicators, Willebrand
	end-diastolic dimension, and ventricular		factor, and D-dimer [56]
	sepal thickness death		
Myocardial infarction	Very high morbidity, severe pain	20-25	Circulating microRNAs level in
			patients [57]
Lipid stress and storage	Influence cholesterol availability in lipid	High LDL/HDL	Omega-3 index [58]
	rafts in immune cells	cholesterol	
Neuronal dysfunction	Neuronal cell death and	levels 10-15	27-hydroxycholesterol, plasma HDL,
ited on a systemetion	neuroinflammatory	10 15	NAEs [59]
Transient global cerebral ischemia	Cardiac arrest and cardiovascular	5-10	ω-3 PUFAs [60]
5	Problems		
Hypoglycemia	Cardiac implications	5-10	Elevated levels of Lp(a) and low HDL
			cholesterol [61]
Hypertriglyceridemia/CAD/acute coronary	Severe effect on BMR and peripheral and	5-10	Altered serum lipid [62]
syndrome	cardiac circulation		
HDL metabolism disorders Nephrotic syndrome	Severe inflammation and pain Renal filtration chocked	5-10	LDs [63]
Nephrotic syndrome	кепаг пигацоп споскец	5-10	LDL cholesterol, triglycerides, and Lp(a) [64]
Fatal myocardial infarction and brain stroke	Cardiovascular risks, morbidity, and	20-25	Fat-specific protein Fsp27,
	mortality in elderly men	20 20	FIT proteins, seipin, and
			ADP-ribosylation factor 1-coat
			protein complex I [65]
Systemic lupus erythematosus	Problem of PCV and hemoglobin	5	Factors, proteins, ions, and
			stimulators of heart muscles [66]
Acute myocardial infarction	Death of part of myocardial muscles,	20-25	Serum soluble ST2 and
	central chest pain, and severe crushing	45.00	interleukin-33 [67]
Hypertension and dyslipidemia,	Cardiovascular risk factors	15-20	TC and LDL [68]
hypercholesterolemia		F 10	PD and IDI C high PMI [60]
SCVRs	Tachyarrhythmias, bradyarrhythmias	5-10 5	BP and LDL-C, high BMI [69] LDL-C, HDL-C, TG, ApoAI, and ApoB
JU ¥ 1/3	raenyari nyuninas, brauyari nyuninas	5	$Lp_{1}(a)$ [70]
AVDs, type 2 diabetes, or metabolic	Increased levels of triglycerides, low	20-25	MetS [71]
syndrome	levels of high-density lipoprotein		
	cholesterol, and postprandial lipemia		
Procardiovascular risks, cardiovascular risks	Inflammation, obesity, and thrombosis	5-10	Sedentary behavior, β -trace protein
			from GFR marker [71]

(Contd...)

Name of disease	Effects	Risk score (%)	Biomarker
Metabolic lipid disorders	Circulatory dysfunctions, high BP, peripheral pain, and high or low BMR	5-10	MALDI-MS, imaging, and lipidomics for clinical diagnosis, and proteome analysis [71]
Ischemic heart disease	Circulatory dysfunctions	Smoking, hypertension, age, family history	Endothelial dysfunction, monocyte accumulation, endothelial apoptosis, and thrombus formation [71]
Low HDL-C syndromes	Increased risk of CAD	5	Sphingomyelin phosphodiesterase 1 and glucocerebrosidase [71]
Hypothyroidism and gall stone	Severe pain, inflammation	5	TSH level and sodium and potassium salts [71]
Multiple CVDs, diabetes, stroke, and recurrent ischemia syndrome	Hepatic inflammation due to common carotid intima-media thickness	10-20	Multiple biomarkers, vascular imaging [71]
Angina pectoris	Obesity, arterial thickness, BMI, and respiration rate, and severe chest pain	10-0	Coronary angiography [71]
Antiphospholipid syndrome	Venous thrombosis	5	microRNAs [71]
Myocardial infarction	PAPP-A in serum	15	Severe blood pressure changes, central chest pain, and silent or knocking angina [71]

Table 5: (Continued)

HDL: High-density lipoprotein, TC: Total cholesterol, LDL: Low-density lipoprotein, CVD: Cardiovascular disease, PUFA: Polyunsaturated fat, IHD: Ischemic heart disease, TG: Triglyceride, NAEs: N-acylethanolamines, LDs: Lipid droplets, CAD: Coronary artery disease, FIT: Fat storage-inducing transmembrane, BMI: Body mass index, PAPP-A: Pregnancy-associated plasma protein-A, TSH: Thyroid-stimulating hormone, BMR: Basal metabolic rate, BP: Blood pressure, GFR: Glomerular filtration rate, AVD: Atherosclerotic vascular disease, SCVRs: Spinal cord vascular resistances, MS: Mass spectroscopy, MetS: Metabolic syndrome

Table 6: Hepatocellular carcinoma biomarkers

HCC marker	Clinical use
AFP	Early diagnosis, monitoring, and recurrence
Lens culinaris agglutinin reactive AFP (AFP-L3%)	Early diagnosis and prognosis, vascular invasion
DCP	Early diagnosis and prognosis, portal vein invasion and metastasis
Gamma-glutamyl transferase	Early diagnosis complementary to other markers
Alpha-l-fucosidase	Early diagnosis
Glypican-3	Early diagnosis
Human carbonyl reductase 2	Prognosis
Golgi phosphoprotein 2	Tumor aggressiveness
Transforming growth factor beta	Tumor invasiveness
HGF	Prognosis and disease recurrence
TGF-b	Prognosis invasiveness
Tumor-specific growth factor	Diagnosis complementary to other markers
Epidermal growth factor receptor family	Early recurrence
Hepatocyte growth factor	Metastasis reduced survival
Micro RNAs	Tumor spread and survival [72]

AFP: Alpha-fetoprotein, DCP: Des-gamma-carboxy prothrombin, HGF: Hepatocyte growth factor, TGF-b: Transforming growth factor-b, HCC: Hepatocellular carcinoma

Table 7: Analytical method to discover biomarker for Alzheimer's disease diagnosis

Analytical method	Biomarker
ELISA	Aβ42, total tau,
	phospho – tau – 181 (single)
Multiplex searchlight ELISAs	16 signaling proteins
Filter-based array sandwich ELISA	18 signaling proteins
INNO - BIA AlzBio3 Luminex – based technology (innogenetics)	Aβ42, total tau,
	phospho – tau – 181 (multiplex)
Tissue array	2325 tissue specimens
Quantitative real-time RT-PCR	33 genes, multiple phosphorylated tau
	epitopes
Liquid chromatography/electrosprayy ionosation MS	Αβ 40, Αβ42
Capillary electrophoresis/MS	1000 polypeptides
Ultrasensitive laser ablation inductively coupled plasma/MS	Trace elements and metal ions
Multiplex iTRAQ	1500 CSF proteins
Surface-enhanced laser desorption/ionization or matrix-assisted laser desorption/ionization	Several Aß species:
	Αβ37, Αβ36, Αβ38, Αβ40
DNA/RNA chips, biochips, gene chips	Several thousand genes [73]

MS: Mass spectroscopy, CSF: Cerebrospinal fluid, RT-PCR: Real-time polymerase chain reaction

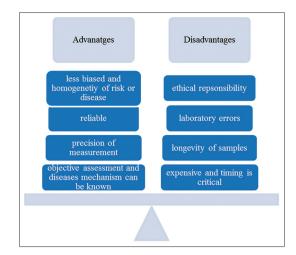


Fig. 2: Relative advantages and disadvantages of biomarkers [11]

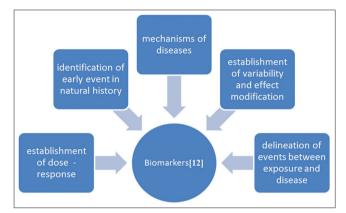


Fig. 3: Salient features of biomarkers

Fig. 4: Biomarkers applications

REFERENCES

- Biomarkers Definition Working Group. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin Pharmacol Ther 2001;69:89-95.
- Strimbu K, Tavel JA. What are biomarkers? Curr Opin HIV AIDS 2010;5(6):463-6.
- WHO International Programme on Chemical Safety. Biomarkers in Risk Assessment: Validity and Validation. 2001. Available from: http:// www.inchem.org/documents/ehc/ehc/222.htm.
- WHO International Programme on Chemical Safety. Biomarkers and Risk Assessment: Concepts and Principles. 1993. Available from http:// www.inchem.org/documents/ehc/ehc/ehc155.htm.
- Fleming TR, DeMets DL. Surrogate end points in clinical trials: Are we being misled? Ann Intern Med 1996;125(7):605-13.
- Desai M, Stockbridge N, Temple R. Blood pressure as an example of a biomarker that functions as a surrogate. AAPS J 2006;8(1):E146-52.
- 7. Gertrude H. Sergievsky Center and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain. New York: College of

Physicians and Surgeons, Columbia University; 2013.

- Craig-Schapiro R, Fagan AM, Holtzman DM. Biomarkers of Alzheimer's disease. Neurobiol Dis 2009;35(2):128-40.
- Mayeux R. New York. Available from: http://www.rpm2/at/columbia. edu.
- U.S. Food and Drug Administration. Innovation or Stagnation: Challenge and Opportunity on the Critical Path to New Medical Products. Rockville, MD: U.S. Food and Drug Administration, U.S. Department of Health and Human Services; 2004. Available from: http://www.fda. gov/oc/initiatives/criticalpath/whitepaper.html#execsummary.
- Mayeux R, Saunders AM, Shea S, Mirra S, Evans D, Roses AD, et al. Utility of the apolipoprotein E genotype in the diagnosis of Alzheimer's disease. Alzheimer's disease centers consortium on apolipoprotein E and alzheimer's disease. N Engl J Med 1998;338(8):506-11.
- Schulte PA. A conceptual and historical framework for molecular epidemiology. In: Molecular Epidemiology. Principles and Practices. San Diego, CA: Academic Press; 1993. p. 3-44.
- Ilyin SE, Belkowski SM, Plata-Salamán CR. Biomarker discovery and validation: Technologies and integrative approaches. Trends Biotechnol 2004;22(8):411-6.
- Pepe MS, Etzioni R, Feng Z, Potter JD, Thompson ML, Thornquist M, et al. Phases of biomarker development for early detection of cancer. J Natl Cancer Inst 2001;93(14):1054-61.
- Barker PE. Cancer biomarker validation: Standards and process: Roles for the national institute of standards and technology (NIST). Ann N Y Acad Sci 2003;983:142-50.
- Rothman N, Hainaut P, Schulte P, Smith M, Boffetta P, Perera F. Molecular Epidemiology: Principles and Practice. San Diego, California: Academic Press; 1993. p. 79-107.
- Luchini A, Geho DH, Bishop B, Tran D, Xia C, Dufour RL, et al. Smart hydrogel particles: Biomarker harvesting: One-step affinity purification, size exclusion, and protection against degradation. Nano Lett 2008;8(1):350-61.
- Taguchi A, Politi K, Pitteri SJ, Lockwood WW, Faça VM, Kelly-Spratt K, et al. Lung cancer signatures in plasma based on proteome profiling of mouse tumor models. Cancer Cell 2011;20(3):289-99.
- Ludwig JA, Weinstein JN. Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer 2005;5(11):845-56.
- Catalona WJ. Clinical utility of measurements of free and total prostatespecific antigen (PSA): A review. Prostate Suppl 1996;7:64-9.
- Beckett ML, Cazares LH, Vlahou A, Schellhammer PF, Wright GL Jr. Prostate-specific membrane antigen levels in sera from healthy men and patients with benign prostate hyperplasia or prostate cancer. Clin Cancer Res 1999;5(12):4034-40.
- Zhenhua M, Ma Q, Wang Z. An evaluation of the diagnostic value of CA19-9 and CEA levels in patients with pancreatic cancer. J Nanjing Med Univ 2009;23:199-202.
- Chen CC, Yang SH, Lin JK, Lin TC, Chen WS, Jiang JK, et al. Is it reasonable to add preoperative serum level of CEA and CA19-9 to staging for colorectal cancer? J Surg Res 2005;124(2):169-74.
- Ozaksit G, Caglar T, Ciçek N, Kusçu E, Batioglu S, Gökmen O. Serum CA 125 levels before, during and after treatment for endometriosis. Int J Gynaecol Obstet 1995;50(3):269-73.
- Fayed ST, Ahmad SM, Kassim SK, Khalifa A. The value of CA 125 and CA72-4 in management of patients with epithelial ovarian cancer. Dis Markers 1998;14(3):155-60.
- Richardson BE, Hulka BS, Peck JL, Hughes CL, van den Berg BJ, Christianson RE, *et al.* Levels of maternal serum alpha-fetoprotein (AFP) in pregnant women and subsequent breast cancer risk. Am J Epidemiol 1998;148(8):719-27.
- Bataille R, Grenier J, Commes T. In vitro production of beta 2 microglobulin by human myeloma cells. Cancer Invest 1988;6(3):271-7.
- Cordoba F, Lavabre-Bertrand T, Salhi SL, Huguet MF, Gerfaux J, Rossi JF, *et al.* Spontaneous monoclonal immunoglobulin-secreting peripheral blood mononuclear cells as a marker of disease severity in multiple myeloma. Br J Haematol 2000;108(3):549-58.
- Hauschild A, Engel G, Brenner W, Gläser R, Mönig H, Henze E, et al. Predictive value of serum S100B for monitoring patients with metastatic melanoma during chemotherapy and/or immunotherapy. Br J Dermatol 1999;140(6):1065-71.
- Hsueh EC, Gupta RK, Glass EC, Yee R, Qi K, Morton DL. Positron emission tomography plus serum TA90 immune complex assay for detection of occult metastatic melanoma. J Am Coll Surg 1998;187(2):191-7.
- Pacini F, Pinchera A. Serum and tissue thyroglobulin measurement: Clinical applications in thyroid disease. Biochimie 1999;81(5):463-7.
- 32. Elisei R. Routine serum calcitonin measurement in the evaluation

of thyroid nodules. Best Pract Res Clin Endocrinol Metab 2008;22(6):941-53.

- Arrieta O, Michel Ortega RM, Angeles-Sánchez J, Villarreal-Garza C, Avilés-Salas A, Chanona-Vilchis JG, *et al.* Serum human chorionic gonadotropin is associated with angiogenesis in germ cell testicular tumors. J Exp Clin Cancer Res 2009;28:120.
- Vijay A, Gertz MA. Waldenström macroglobulinemia. Blood 2007;109(12):5096-103.
- 35. Federico M, Guglielmi C, Luminari S, Mammi C, Marcheselli L, Gianelli U, *et al.* Prognostic relevance of serum beta2 microglobulin in patients with follicular lymphoma treated with anthracycline-containing regimens. A GISL study. Haematologica 2007;92(11):1482-8.
- Salomon DS, Brandt R, Ciardiello F, Normanno N. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 1995;19(3):183-232.
- Sidransky D. Emerging molecular markers of cancer. Nat Rev Cancer 2002;2(3):210-9.
- Hammarström S. The carcinoembryonic antigen (CEA) family: Structures, suggested functions and expression in normal and malignant tissues. Semin Cancer Biol 1999;9(2):67-81.
- Shangguan D, Li Y, Tang Z, Cao ZC, Chen HW, Mallikaratchy P, et al. Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci U S A 2006;103(32):11838-43.
- Henderson IC, Patek AJ. The relationship between prognostic and predictive factors in the management of breast cancer. Breast Cancer Res Treat 1998;52(1-3):261-88.
- Dandachi N, Dietze O, Hauser-Kronberger C. Chromogenic *in situ* hybridization: A novel approach to a practical and sensitive method for the detection of HER2 oncogene in archival human breast carcinoma. Lab Invest 2002;82(8):1007-14.
- Molina R, Auge JM, Escudero JM, Marrades R, Viñolas N, Carcereny E, et al. Mucins CA 125, CA 19.9, CA 15.3 and TAG-72.3 as tumor markers in patients with lung cancer: Comparison with CYFRA 21-1, CEA, SCC and NSE. Tumour Biol 2008;29(6):371-80.
- Landman J, Chang Y, Kavaler E, Droller MJ, Liu BC. Sensitivity and specificity of NMP-22, telomerase, and BTA in the detection of human bladder cancer. Urology 1998;52(3):398-402.
- Kalantarian S, Rimm EB, Herrington DM, Mozaffarian D. Dietary macronutrients, genetic variation, and progression of coronary atherosclerosis among women. Am Heart J 2014;167(4):627-35.e1.
- 45. Shao B, Tang C, Sinha A, Mayer PS, Davenport GD, Brot N, et al. Humans with atherosclerosis have impaired ABCA1 cholesterol efflux and enhanced high-density lipoprotein oxidation by myeloperoxidase. Circ Res 2014;114(11):1733-42.
- Distiller LA. Why do some patients with type 1 diabetes live so long? World J Diabetes 2014;5(3):282-7.
- Mueller T, Hinterreiter F, Luft C, Poelz W, Haltmayer M, Dieplinger B. Mortality rates and mortality predictors in patients with symptomatic peripheral artery disease stratified according to age and diabetes. J Vasc Surg 2014;59(5):1291-9.
- Unis A, Abdelbary A, Hamza M. Comparison of the effects of escitalopram and atorvastatin on diet-induced atherosclerosis in rats. Can J Physiol Pharmacol 2014;92(3):226-33.
- Hadi NR, Mohammad BI, Ajeena IM, Sahib HH. Antiatherosclerotic potential of clopidogrel: Antioxidant and anti-inflammatory approaches. Biomed Res Int 2013;2013:790263.
- Collier P, Watson CJ, Voon V, Phelan D, Jan A, Mak G, *et al.* Can emerging biomarkers of myocardial remodelling identify asymptomatic hypertensive patients at risk for diastolic dysfunction and diastolic heart failure? Eur J Heart Fail 2011;13:1087-95.
- 51. Kachkovskii MA, Simerzin VV, Rybanenko OA, Kirichenko NA. Hemostasiological, lipidemic, and hemodynamic indicators associated with the risk of cardiovascular death in high- and very high-risk patients according to the SCORE scale. Ter Arkh 2014;86(3):59-64.
- 52. Whelton SP, Narla V, Blaha MJ, Nasir K, Blumenthal RS, Jenny NS, et al. Association between resting heart rate and inflammatory biomarkers (High-sensitivity C-reactive protein, interleukin-6, and fibrinogen) (From the multi-ethnic study of atherosclerosis). Am J

Cardiol 2014;113(4):644-9.

- Rubenfire M, Brook RD. HDL cholesterol and cardiovascular outcomes: What is the evidence? Curr Cardiol Rep 2013;15(4):349.
- Catapano AL, Pirillo A, Bonacina F, Norata GD. HDL in innate and adaptive immunity. Cardiovasc Res 2014;103(3):372-83.
- Zampetaki A, Willeit P, Tilling L, Drozdov I, Prokopi M, Renard JM, et al. Prospective study on circulating MicroRNAs and risk of myocardial infarction. J Am Coll Cardiol 2012;60(4):290-9.
- von Schacky C. Omega-3 index and cardiovascular health. Nutrients 2014;6(2):799-814.
- 57. Heringlake M, Charitos EI, Gatz N, Käbler JH, Beilharz A, Holz D, et al. Growth differentiation factor 15: A novel risk marker adjunct to the EuroSCORE for risk stratification in cardiac surgery patients. J Am Coll Cardiol 2013;61(6):672-81.
- Grundy SM. Use of emerging lipoprotein risk factors in assessment of cardiovascular risk. JAMA 2012;307(23):2540-2.
- Luo C, Ren H, Wan JB, Yao X, Zhang X, He C, et al. Enriched endogenous omega-3 fatty acids in mice protect against global ischemia injury. J Lipid Res 2014;55(7):1288-97.
- Esposito E, Cordaro M, Cuzzocrea S. Roles of fatty acid ethanolamides (FAE) in traumatic and ischemic brain injury. Pharmacol Res 2014;86:26-31.
- Hanefeld M, Duetting E, Bramlage P. Cardiac implications of hypoglycaemia in patients with diabetes - a systematic review. Cardiovasc Diabetol 2013;12:135.
- Tan JS, Seow CJ, Goh VJ, Silver DL. Recent advances in understanding proteins involved in lipid droplet formation, growth and fusion. J Genet Genomics 2014;41(5):251-9.
- Gupta S, Gudapati R, Gaurav K, Bhise M. Emerging risk factors for cardiovascular diseases: Indian context. Indian J Endocrinol Metab 2013;17(5):806-14.
- 64. Rich-Edwards JW, Fraser A, Lawlor DA, Catov JM. Pregnancy characteristics and women's future cardiovascular health: An underused opportunity to improve women's health? Epidemiol Rev 2014;36:57-70.
- Hoderoft CJ, Rossiter MC, Buch AN. Cannabis-associated myocardial infarction in a young man with normal coronary arteries. J Emerg Med 2014;47(3):277-81.
- Weiner SD, Ahmed HN, Jin Z, Cushman M, Herrington DM, Nelson JC, et al. Systemic inflammation and brachial artery endothelial function in the multi-ethnic study of atherosclerosis (MESA). Heart 2014;100(11):862-6.
- Hurks R, Vink A, Hoefer IE, de Vries JP, Schoneveld AH, Schermerhorn ML, *et al.* Atherosclerotic risk factors and atherosclerotic postoperative events are associated with low inflammation in abdominal aortic aneurysms. Atherosclerosis 2014;235(2):632-41.
- Oni ET, Agatston AS, Blaha MJ, Fialkow J, Cury R, Sposito A, et al. A systematic review: Burden and severity of subclinical cardiovascular disease among those with nonalcoholic fatty liver; should we care? Atherosclerosis 2013;230(2):258-67.
- Nursalim A, Suryaatmadja M, Panggabean M. Potential clinical application of novel cardiac biomarkers for acute myocardial infarction. Acta Med Indones 2013;45(3):240-50.
- Eggers KM, Al-Shakarchi J, Berglund L, Lindahl B, Siegbahn A, Wallentin L, *et al.* High-sensitive cardiac troponin T and its relations to cardiovascular risk factors, morbidity, and mortality in elderly men. Am Heart J 2013;166(3):541-8.
- 71. O'Malley RG, Bonaca MP, Scirica BM, Murphy SA, Jarolim P, Sabatine MS, et al. Prognostic performance of multiple biomarkers in patients with non-ST-segment elevation acute coronary syndrome: Analysis from the MERLIN-TIMI 36 trial (Metabolic efficiency with ranolazine for less ischemia in non-ST-elevation acute coronary syndromes-thrombolysis in myocardial infarction 36). J Am Coll Cardiol 2014;63(16):1644-53.
- Humpel C. Identifying and validating biomarkers for Alzheimer's disease. Trends Biotechnol 2011;29(1):26-32.
- Liotta LA, Petricoin E. Cancer biomarkers: Closer to delivering on their promise. Cancer Cell 2011;20(30):279-80.