ANTIHEPATITIS C VIRUS ACTIVITY OF INDOONESIAN MAHOGANY (TOONA SURENI)

ACHMAD FUAD HAFID1,2, TUTIK SRI WAHYUNI1,2, LIDYA TUMEWU1, EVHY APRYANI1, ADITA AYU PERMANASARI1, MYRNA ADIANTI1,2, CHIE AKOI UTSUBO4, ATY WIDYAWARYANTI1,2, MARIA INGE LUSIDA1, SOETJIPTO1, HIROYUKI FUCHINO6, NOBUO KAWAHARA5, HAK HOTTAY5

1Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia. 2Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia. 3Department of Health, Study Program Traditional Medicine, Vocational Faculty, Universitas Airlangga, Surabaya, Indonesia. 4Department of International Health, Kobe University Graduate School of Health Sciences, 7-10-2, Tomogakka, Soma-ku, Kobe 654-0142, Japan. 5Department of Oral Vaccine and Drug Development, Kobe University Graduate School of Health Sciences, 1-5-6 Minatojima-minamimachi, Chou-ku, Kobe 650-0047, Japan. 6Research Center for Medicinal Plant Resources, National Institute of Biomedical Innovation, Tsukuba, Ibaraki, Japan.

Email: achmadfuad@ff.unair.ac.id, achmadfuad@yahoo.com

Received: 24 February 2017, Revised and Accepted: 27 October 2017

INTRODUCTION

Hepatitis C virus (HCV) is a major cause of liver disease and potential cause of substantial morbidity and mortality worldwide. Global prevention and control of HCV were met with difficulties due to the complexity and uncertainty related to the geographic distribution of HCV infection and chronic hepatitis C, determination of its associated risk factors, and evaluation of cofactors that accelerate its progression. No vaccine is available to prevent HCV infection, nor does immune globulin provide protection [1,2].

Hepatitis C is an RNA virus that mutates very rapidly, until now, there were seven genotypes (1–7) with more than 70 subtypes. HCV genome encodes structural protein (Core, E1, and E2) and non-structural protein (NS2, NS3, NS4A, NS4B, NS5A, and NS5B). Glycoproteins E1 and E2 were responsible for virus binding to the cell surface meanwhile the function of non-structural protein was RNA replication and virus particle construction [3-5]. The current standard interferon-free treatment regimens with a combination of direct-acting antiviral agents (DAAs) targeting the viral NS3 protease, NS5A multifunction protein, and NS5B RNA-dependent RNA polymerase result sustained virological responses >90%. However, the emergence of DAA-resistant HCV strains, limited access to the DAAs due to their high cost is also an important issue. Many therapies for HCV infection have been developed, but the therapeutic efficacy still needs to be improved [6]. In future, anti-HCV research should aim at the development of therapies for non-responder patient population and treatment regimens with short duration of treatment [7].

Many plants species are being tested for anti-HCV to find a possible cure for HCV. Some of them have shown significant inhibition in entry, replication, and assembly steps of the viral life cycle [8]. Moreover, some compounds have been isolated and tested for anti-HCV. Previous study reported that chalcone and pseudane IX which isolated from Ruta angustifolia leaves showed strong anti-HCV activities with 50% inhibitory concentration (IC50) value of 1.7 ± 0.5 and 1.4 ± 0.2 µg/mL, respectively, without apparent cytotoxicity [9]. A major catabolite of chloromphyll A, which was isolated from Morinda citrifolia and identified as pheophorbide A, was reported to possess anti-HCV activity with IC50 value of 0.2 µg/mL [10]. Adianti et al. suggested that glycyrrhizin, glycerin, glycerol, and liquiritigenin isolated from Glycyrrhiza uralensis, as well as isoliquiritigenin, licochalcone A, and glabridin, would be good candidates for seed compounds to develop antivirals against HCV [11]. Quercetin and gallic acid isolated from Kalanchoe pinnata inhibited HCV production in a dose-dependent manner with IC50 value of 1.5 and 6.1 µg/mL, respectively, without exhibiting cytotoxicity [12].

ABSTRACT

Objective: Toona sureni (Indian mahogany) is a member of Meliaceae family and locally known as suren. Previous study reported that T. sureni leaves extract exhibited antiviral activity with 50% inhibitory concentration (IC50) value of 13.9 ± 1.6 µg/mL against hepatitis C virus (HCV) J6/JFH1. Cytotoxicity analysis of T. sureni leaves extract did not reveal any cytotoxic effect; therefore, further study was taken to investigate the active substances from the extract.

Methods: Bioassay-guided isolation of anti-HCV was conducted using Huh-7.5 cells infected with HCV J6/JFH1 in the presence of extracts, fractions, or compounds from the plant.

Results: Ethyl acetate fraction (Fr E) exhibited high anti-HCV activity with IC50 value of 1.7 µg/mL. Further, separation of Fr E by open column chromatography resulted in nine sub-fractions (sub-Fr E1-E9). Sub-Fr E3 and E4 have IC50 value of 29.90 µg/mL and 76.8 µg/mL, respectively. Polyphenols compounds have been isolated from sub-Fr E3 and E4. The structures have been determined to be ethyl gallate (1), methyl gallate (2), catechin (3), gallic acid (4), and quercetin 3-O-rhamnoside (5). Among the isolated compounds, gallic acid showed to possess strong anti-HCV activity with IC50 value of 15.9 µg/mL.

Conclusion: T. sureni and its isolated compound, gallic acid, may be good candidates to develop for alternative and/or complementary agents of anti-HCV infection.

Keywords: Toona sureni, Leaves extract, Polyphenols, Antihepatitis C virus, Gallic acid.
Evaluation of certain Indonesia medicinal plants explored from East Java revealed that Toona sureni is one of the good candidates for the development of anti-HCV drugs. T. sureni (Indonesian mahogany) is a member of Meliaceae family and locally known as suren. The study reported that ethanol extract of T. sureni leaves exhibited antiviral activity with IC_{50} value of 15.9 ± 1.6 µg/ml against HCV J6/JFH1. Time of inhibition experiment revealed that the extract inhibited both at the entry and postentry steps. T. sureni leaves extract was not toxic (cytotoxicity concentration [CC_{50}]<500 µg/ml, SI>35.9); therefore, further study was taken to investigate the active substances from T. sureni leaves extract [13].

Another Toona species has been known for other activity. T. sinensis has activity for antimicrobial, anticancer, anti-inflammation, radical scavenging, and antioxidant in the liver. T. ciliata and T. pubescens have been used traditionally as a treatment for diarrhea, as cardiotonic, astringent, and antioxidant [8,14-18]. However, Jain et al. reported in his research that the antioxidant activity level can affect reduction of chronic hepatitis and cirrhosis [19].

METHODS

Plant material

T. sureni leaves were collected from Pujon, East Java, Indonesia. Authentication and identification of plant were carried out at the Purwodadi Botanical Garden, East Java.

Extraction and isolation

Leaves of T. sureni were dried at room temperature and pulverized. Dried leaves powder (250 g) were extracted using 80% ethanol by maceration method. The ethanol extract was filtered and concentrated using rotary evaporator. The crude ethanol extract (25.6 g) was suspended in water and partitioned between chloroform, ethyl acetate, and butanol, successively to obtain chloroform, ethyl acetate, butanol, and water fraction, respectively. Ethyl acetate fraction (13.9 g) was further separated on a column chromatography using silica gel and chloroform-ethyl acetate (1:1) to yield ethyl gallate (1). Sub-Fr E4 was further subjected to silica gel column (chloroform/methanol 90:1-50:50) resulted in nine sub-fractions (Sub-Fr E4.1–E4.9). Sub-Fr E3 was subjected to open column chromatography using silica gel and chloroform-ethyl acetate (1:1) to yield ethyl gallate (1). Sub-Fr E4 was further subjected to silica gel column (chloroform/methanol 90:1-50:50) resulted in nine sub-fractions (Sub-Fr E4.1–E4.9). Sub-Fr E4.1 further subjected to silica gel column (hexane/ethyl acetate 4:6:60; 20:80, ethyl acetate, and methanol) to yield ethyl gallate (1). Sub-Fr E4.2 was subjected to semi-preparative high-performance liquid chromatography (HPLC) system (C-18 column, 5 µm, 10×250 mm, flow rate 2.5 ml/min) using acetonitrile-water (20:80%) to yield methyl gallate (2). Sub-Fr E4.3 was also subjected to semi-preparative HPLC using the same condition (flow rate 1.5 ml/min) to obtain gallic acid (3) and catechin (4). Sub-Fr E4.4 was also subjected to semi-preparative HPLC using the same condition (flow rate 1.5 ml/min) to yield quercetin 3-O-rhamnoside (5). Structure elucidation based on nuclear magnetic resonance (NMR) data and references data. The {H} NMR spectra were measured with JEOL ECA 500 spectrometer (500 MHz), while HPLC was performed on Shimadzu system.

Cells and viruses

Huh-7 cells were cultivated in Dulbecco’s modified Eagle’s medium supplemented with fetal bovine serum, non-essential amino acids, penicillin, and streptomycin. Cells were grown at 37°C in a 5% CO₂ incubator.

Analysis of anti-HCV activities

T. sureni extract and fractions were dissolved in dimethyl sulfoxide (DMSO) to obtain stock solutions at a concentration of 100 µg/ml. The stock solutions were stored at -20°C until they were used. Analysis of anti-HCV method was described previously [9,13]. Huh-7 cells were seeded in 24-well plates (cell density 1.9×10⁴ cells/well). A fixed amount of J6/JFH1 with multiplication of infection of 0.5 focus-forming units/cell was mixed with serial dilutions of the extracts (100, 30, 10, 1, and 0.1 µg/ml) and inoculated to the cells. After 2 h, the cells were washed with medium to remove the residual virus and further incubated in the medium containing the same concentrations of the test samples as those during virus inoculation.

Culture supernatants were obtained at 2-day postinfection and titrated for virus infectivity. Virus and cells treated with medium containing 0.1% DMSO served as a control. The inhibition percentage of virus infectivity by the samples was calculated by comparing to the control using SPSS probit analysis, and the IC_{50} value was determined.

Cytotoxicity assay

The cytotoxicity of the samples was assessed by WST-1 assay. Huh-7.5 cells were seeded in 96-well plates and treated with serial dilution of the samples or control (0.1% DMSO) for 48 h. The condition of cells was observed under microscope to detect the toxic effect on cell morphology. After 48 h, the medium was removed from 96-well plates and then added with 10% of WST-1 reagent (10 µl/well) and incubated for 4 h at 37°C. The absorbance of samples was measured at 560 and 750 nm. Cell viability percentage and 50% CI_{50} were calculated.

RESULTS AND DISCUSSION

Bioactivity-guided isolation of anti-HCV compounds from T. sureni was conducted using Huh-7.5 cells infected with HCV J6/JFH1 in the presence of extract, fractions, or compounds from the plant. To isolate an active substance(s) responsible for the anti-HCV activity, the crude ethanol extract was partitioned into chloroform (Fr C), ethyl acetate (Fr E), butanol (Fr B), and water fractions (Fr W) and their anti-HCV activities were evaluated. The result showed that the Fr C and Fr E had strong anti-HCV activities with IC_{50} values of 1.6 and 1.7 µg/ml, respectively (Table 1).

Due to the anti-HCV activities of Fr E, further separation of Fr E was done by open column chromatography and resulted in nine sub-fractions (Sub-Fr E1–E9). These fractions were evaluated for anti-HCV and cytotoxic activities. The result obtained revealed that sub-Fr E3 and E4 have strong anti-HCV activities with IC_{50} value of 29.9 µg/ml and 7.7 µg/ml, respectively (Table 2).

Sub-Fr E3 and E4 were subjected to further purification which yielded some polyphenols compounds that have been determined to be ethyl gallate (1), methyl gallate (2), catechin (3), gallic acid (4), and quercetin 3-O-rhamnoside (5) (Fig. 1). Chemical structures of isolated compounds were elucidated based on NMR spectroscopy and reference

<table>
<thead>
<tr>
<th>Samples</th>
<th>IC_{50} µg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanol extract</td>
<td>13.9</td>
</tr>
<tr>
<td>Chloroform fraction (Fr C)</td>
<td>1.6</td>
</tr>
<tr>
<td>Ethylacetate fraction (Fr E)</td>
<td>1.7</td>
</tr>
<tr>
<td>Butanol fraction (Fr B)</td>
<td>15.4</td>
</tr>
<tr>
<td>Water fraction (Fr W)</td>
<td>50.0</td>
</tr>
</tbody>
</table>

Table 1: IC_{50} values of a crude ethanol extract and its fractions from T. sureni

<table>
<thead>
<tr>
<th>Samples</th>
<th>IC_{50} µg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>NT</td>
</tr>
<tr>
<td>E2</td>
<td>NT</td>
</tr>
<tr>
<td>E3</td>
<td>29.9±0.7</td>
</tr>
<tr>
<td>E4</td>
<td>7.7±0.2</td>
</tr>
<tr>
<td>E5</td>
<td>27.0±4.2</td>
</tr>
<tr>
<td>E6</td>
<td>7.1±0.3</td>
</tr>
<tr>
<td>E7</td>
<td>16.8±0.3</td>
</tr>
<tr>
<td>E8</td>
<td>7.4±0.2</td>
</tr>
<tr>
<td>E9</td>
<td>16.6±0.1</td>
</tr>
</tbody>
</table>

*NT: Not tested. T. sureni: Toona sureni, IC_{50}: 50% inhibitory concentration
data. Anti-HCV activities of those compounds were then evaluated. The results showed that gallic acid mediates a strong anti-HCV activity with IC₅₀ value of 15.90 µg/ml, while ethyl gallate and catechin revealed moderate activities with IC₅₀ value of 52.5 and 52.0 µg/ml, respectively.

On the other hand, the presence of methyl moiety in the methyl gallate resulted in inactive compound against HCV, suggesting that moiety of OH in gallic acid may play an important role for its anti-HCV activities (Table 3).

Gallic acid is also a common natural constituent of a variety of plants. In the present study, gallic acid was identified as a compound with stronger anti-HCV activity than the other isolated compounds. According to Hsu et al. reported that gallic acid inhibits HCV in the entry step. This compound inactivates cell-free viral particle and blocks its attachment to the host cells. However, it has a little effect on postbinding of viral entry and fusion stage [20]. Gallic acid is also known to have antioxidant and hepatoprotective activities [21,22]. Most phenolic compounds have radical-scavenging activity. The activity depends on the number and position of hydroxyl group substituent in the molecules as which called radical-scavenging activity. The activity depends on the number and position of hydroxyl group substituent in the molecules as which called radical-scavenging activity.

CONCLUSION

Plant of T. sureni is a potential source for anti-HCV agent. Ethyl acetate fraction (Fr E) of this plant is active as anti-HCV against J6/JFH1 with IC₅₀ value of 1.7 µg/ml. Ethyl gallate (1), methyl gallate (2), catechin (3), gallic acid (4), and quercetin 3-O-rhamnoside (5) were isolated from Fr E. Among the isolated compounds; gallic acid showed to possess strong anti-HCV activity with IC₅₀ value of 15.9 µg/ml. These results suggested that T. sureni and its isolated compound, gallic acid, may be good candidates to develop for alternative and/or complementary agents of anti-HCV infection.

ACKNOWLEDGMENTS

This study was supported by grant for Research Project Collaboration of Science and Technology Research Partnership for Sustainable Development (SATREPS) from Japan Science and Technology Agency (JST). Japan International Cooperation Agency (JICA) and Universitas Airlangga, Indonesia, year 2010–2014.

AUTHOR CONTRIBUTION

AFH, LT, AW, HF and NK contributed to phytochemistry work. TSW, EA, AAP, MA and CAU contributed to anti-HCV work. MIL, S and HH as principle investigators, planned and coordinated the study. All the authors read and approved the final manuscript.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES